Skip to main content

Advertisement

Log in

Enhancement of acid-sensing ion channel activity by metabotropic P2Y UTP receptors in primary sensory neurons

  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Peripheral purinergic signaling plays an important role in nociception. Increasing evidence suggests that metabotropic P2Y receptors are also involved, but little is known about the underlying mechanism. Herein, we report that selective P2Y receptor agonist uridine 5′-triphosphate (UTP) can exert an enhancing effect on the functional activity of acid-sensing ion channels (ASICs), key sensors for extracellular protons, in rat dorsal root ganglia (DRG) neurons. First, UTP dose-dependently increased the amplitude of ASIC currents. UTP also shifted the concentration–response curve for proton upwards, with a 56.6 ± 6.4 % increase of the maximal current response to proton. Second, UTP potentiation of proton-gated currents can be mimicked by adenosine 5′-triphosphate (ATP), but not by P2Y1 receptor agonist ADP. Potentiation of UTP was blocked by P2Y receptor antagonist suramin and by inhibition of intracellular G protein, phospholipase C (PLC), protein kinase C (PKC), or protein interacting with C-kinase 1 (PICK1) signaling. Third, UTP altered acidosis-evoked membrane excitability of DRG neurons and caused a significant increase in the amplitude of the depolarization and the number of spikes induced by acid stimuli. Finally, UTP dose-dependently exacerbated nociceptive responses to injection of acetic acid in rats. These results suggest that UTP enhanced ASIC-mediated currents and nociceptive responses, which reveal a novel peripheral mechanism underlying UTP-sensitive P2Y2 receptor involvement in hyperalgesia by sensitizing ASICs in primary sensory neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ASIC:

Acid-sensing ion channels

ATP:

Adenosine 5′-triphosphate

DRG:

Dorsal root ganglion

IpH :

Proton-gated current

PICK1:

Protein interacting with C-kinase 1

PKC:

Protein kinase C

PLC:

Phospholipase C

TRPV1:

Transient receptor potential vanilloid receptor-1

UTP:

Uridine 5′-triphosphate

References

  1. Cook SP, McCleskey EW (2002) Cell damage excites nociceptors through release of cytosolic ATP. Pain 95:41–47

    Article  PubMed  CAS  Google Scholar 

  2. Lazarowski ER, Boucher RC, Harden TK (2003) Mechanisms of release of nucleotides and integration of their action as P2X- and P2Y-receptor activating molecules. Mol Pharmacol 64:785–795

    Article  PubMed  CAS  Google Scholar 

  3. Gerevich Z, Illes P (2004) P2Y receptors and pain transmission. Purinergic Signal 1:3–10

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  4. Magni G, Ceruti S (2013) P2Y purinergic receptors: new targets for analgesic and antimigraine drugs. Biochem Pharmacol 85:466–477

    Article  PubMed  CAS  Google Scholar 

  5. Kobayashi K, Fukuoka T, Yamanaka H, Dai Y, Obata K, Tokunaga A et al (2006) Neurons and glial cells differentially express P2Y receptor mRNAs in the rat dorsal root ganglion and spinal cord. J Comp Neurol 498:443–454

    Article  PubMed  CAS  Google Scholar 

  6. Molliver DC, Cook SP, Carlsten JA, Wright DE, McCleskey EW (2002) ATP and UTP excite sensory neurons and induce CREB phosphorylation through the metabotropic receptor, P2Y2. Eur J Neurosci 16:1850–1860

    Article  PubMed  Google Scholar 

  7. Moriyama T, Iida T, Kobayashi K, Higashi T, Fukuoka T, Tsumura H et al (2003) Possible involvement of P2Y2 metabotropic receptors in ATP-induced transient receptor potential vanilloid receptor 1-mediated thermal hypersensitivity. J Neurosc: Off J Soc Neurosci 23:6058–6062

    CAS  Google Scholar 

  8. Yousuf A, Klinger F, Schicker K, Boehm S (2011) Nucleotides control the excitability of sensory neurons via two P2Y receptors and a bifurcated signaling cascade. Pain 152:1899–1908

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Lechner SG, Lewin GR (2009) Peripheral sensitisation of nociceptors via G-protein-dependent potentiation of mechanotransduction currents. J Physiol 587:3493–3503

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Li N, Lu ZY, Yu LH, Burnstock G, Deng XM, Ma B (2014) Inhibition of G protein-coupled P2Y2 receptor induced analgesia in a rat model of trigeminal neuropathic pain. Mol Pain 10:21

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Malin SA, Davis BM, Koerber HR, Reynolds IJ, Albers KM, Molliver DC (2008) Thermal nociception and TRPV1 function are attenuated in mice lacking the nucleotide receptor P2Y2. Pain 138:484–496

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Basbaum AI, Bautista DM, Scherrer G, Julius D (2009) Cellular and molecular mechanisms of pain. Cell 139:267–284

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Kweon HJ, Suh BC (2013) Acid-sensing ion channels (ASICs): therapeutic targets for neurological diseases and their regulation. BMB Rep 46:295–304

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Steen KH, Reeh PW, Anton F, Handwerker HO (1992) Protons selectively induce lasting excitation and sensitization to mechanical stimulation of nociceptors in rat skin, in vitro. J Neurosci: Off J Soc Neurosci 12:86–95

    CAS  Google Scholar 

  15. Deval E, Noel J, Lay N, Alloui A, Diochot S, Friend V et al (2008) ASIC3, a sensor of acidic and primary inflammatory pain. EMBO J 27:3047–3055

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Krishtal O (2003) The ASICs: signaling molecules? Modulators? Trends Neurosci 26:477–483

    Article  PubMed  CAS  Google Scholar 

  17. Deval E, Lingueglia E (2015) Acid-sensing ion channels and nociception in the peripheral and central nervous systems. Neuropharmacology 94:49–57

    Article  PubMed  CAS  Google Scholar 

  18. Alvarez de la Rosa D, Zhang P, Shao D, White F, Canessa CM (2002) Functional implications of the localization and activity of acid-sensitive channels in rat peripheral nervous system. Proc Natl Acad Sci U S A 99:2326–2331

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Benson CJ, Xie J, Wemmie JA, Price MP, Henss JM, Welsh MJ et al (2002) Heteromultimers of DEG/ENaC subunits form H + −gated channels in mouse sensory neurons. Proc Natl Acad Sci U S A 99:2338–2343

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Price MP, McIlwrath SL, Xie J, Cheng C, Qiao J, Tarr DE et al (2001) The DRASIC cation channel contributes to the detection of cutaneous touch and acid stimuli in mice. Neuron 32:1071–1083

    Article  PubMed  CAS  Google Scholar 

  21. Deval E, Noel J, Gasull X, Delaunay A, Alloui A, Friend V et al (2011) Acid-sensing ion channels in postoperative pain. J Neurosci: Off J Soc Neurosci 31:6059–6066

    Article  CAS  Google Scholar 

  22. Dussor G (2015) ASICs as therapeutic targets for migraine. Neuropharmacology 94:64–71

    Article  PubMed  CAS  Google Scholar 

  23. Wemmie JA, Taugher RJ, Kreple CJ (2013) Acid-sensing ion channels in pain and disease. Nat Rev Neurosci 14:461–471

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Seo HS, Roh DH, Kwon SG, Yoon SY, Kang SY, Moon JY et al (2011) Acidic pH facilitates peripheral alphabetameATP-mediated nociception in rats: differential roles of P2X, P2Y, ASIC and TRPV1 receptors in ATP-induced mechanical allodynia and thermal hyperalgesia. Neuropharmacology 60:580–586

    Article  PubMed  CAS  Google Scholar 

  25. Poirot O, Berta T, Decosterd I, Kellenberger S (2006) Distinct ASIC currents are expressed in rat putative nociceptors and are modulated by nerve injury. J Physiol 576:215–234

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Omori M, Yokoyama M, Matsuoka Y, Kobayashi H, Mizobuchi S, Itano Y et al (2008) Effects of selective spinal nerve ligation on acetic acid-induced nociceptive responses and ASIC3 immunoreactivity in the rat dorsal root ganglion. Brain Res 1219:26–31

    Article  PubMed  CAS  Google Scholar 

  27. Wang X, Li WG, Yu Y, Xiao X, Cheng J, Zeng WZ et al (2013) Serotonin facilitates peripheral pain sensitivity in a manner that depends on the nonproton ligand sensing domain of ASIC3 channel. J Neurosci: Off J Soc Neurosci 33:4265–4279

    Article  CAS  Google Scholar 

  28. Qiu F, Qiu CY, Cai H, Liu TT, Qu ZW, Yang Z et al (2014) Oxytocin inhibits the activity of acid-sensing ion channels through the vasopressin, V1A receptor in primary sensory neurons. Br J Pharmacol 171:3065–3076

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Abbracchio MP, Burnstock G, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C et al (2006) International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev 58:281–341

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. von Kugelgen I (2006) Pharmacological profiles of cloned mammalian P2Y-receptor subtypes. Pharmacol Ther 110:415–432

    Article  CAS  Google Scholar 

  31. Kellenberger S, Schild L (2015) International union of basic and clinical pharmacology. XCI. Structure, function, and pharmacology of acid-sensing ion channels and the epithelial Na + channel. Pharmacol Rev 67:1–35

    Article  PubMed  CAS  Google Scholar 

  32. Krishtal OA, Pidoplichko VI (1980) A receptor for protons in the nerve cell membrane. Neuroscience 5:2325–2327

    Article  PubMed  CAS  Google Scholar 

  33. Ruan HZ, Birder LA, de Groat WC, Tai C, Roppolo J, Buffington CA et al (2005) Localization of P2X and P2Y receptors in dorsal root ganglia of the cat. J Histochem Cytochem: Off J Histochem Soc 53:1273–1282

    Article  CAS  Google Scholar 

  34. Ruan HZ, Burnstock G (2003) Localisation of P2Y1 and P2Y4 receptors in dorsal root, nodose and trigeminal ganglia of the rat. Histochem Cell Biol 120:415–426

    Article  PubMed  CAS  Google Scholar 

  35. Sanada M, Yasuda H, Omatsu-Kanbe M, Sango K, Isono T, Matsuura H et al (2002) Increase in intracellular Ca(2+) and calcitonin gene-related peptide release through metabotropic P2Y receptors in rat dorsal root ganglion neurons. Neuroscience 111:413–422

    Article  PubMed  CAS  Google Scholar 

  36. von Kugelgen I, Wetter A (2000) Molecular pharmacology of P2Y-receptors. Naunyn Schmiedeberg’s Arch Pharmacol 362:310–323

    Article  Google Scholar 

  37. Mo G, Peleshok JC, Cao CQ, Ribeiro-da-Silva A, Seguela P (2013) Control of P2X3 channel function by metabotropic P2Y2 utp receptors in primary sensory neurons. Mol Pharmacol 83:640–647

    Article  PubMed  CAS  Google Scholar 

  38. Qiu CY, Liu YQ, Qiu F, Wu J, Zhou QY, Hu WP (2012) Prokineticin 2 potentiates acid-sensing ion channel activity in rat dorsal root ganglion neurons. J Neuroinflammation 9:108

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Deval E, Salinas M, Baron A, Lingueglia E, Lazdunski M (2004) ASIC2b-dependent regulation of ASIC3, an essential acid-sensing ion channel subunit in sensory neurons via the partner protein PICK-1. J Biol Chem 279:19531–19539

    Article  PubMed  CAS  Google Scholar 

  40. Issberner U, Reeh PW, Steen KH (1996) Pain due to tissue acidosis: a mechanism for inflammatory and ischemic myalgia? Neurosci Lett 208:191–194

    Article  PubMed  CAS  Google Scholar 

  41. Sutherland SP, Cook SP, McCleskey EW (2000) Chemical mediators of pain due to tissue damage and ischemia. Prog Brain Res 129:21–38

    Article  PubMed  CAS  Google Scholar 

  42. Hagberg H (1985) Intracellular pH during ischemia in skeletal muscle: relationship to membrane potential, extracellular pH, tissue lactic acid and ATP. Pflugers Arch - Eur J Physiol 404:342–347

    Article  CAS  Google Scholar 

  43. Sinoway LI, Li J (2005) A perspective on the muscle reflex: implications for congestive heart failure. J Appl Physiol 99:5–22

    Article  PubMed  CAS  Google Scholar 

  44. Anderson CM, Parkinson FE (1997) Potential signalling roles for UTP and UDP: sources, regulation and release of uracil nucleotides. Trends Pharmacol Sci 18:387–392

    Article  PubMed  CAS  Google Scholar 

  45. Lazarowski ER, Boucher RC, Harden TK (2000) Constitutive release of ATP and evidence for major contribution of ecto-nucleotide pyrophosphatase and nucleoside diphosphokinase to extracellular nucleotide concentrations. J Biol Chem 275:31061–31068

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 31471062 and 81171039) and the Natural Science Foundation of Hubei Province of China (No. 2015CFA145).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang-Ping Hu.

Ethics declarations

Conflicts of interest

The author(s) declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, C., Gan, X., Wu, J. et al. Enhancement of acid-sensing ion channel activity by metabotropic P2Y UTP receptors in primary sensory neurons. Purinergic Signalling 12, 69–78 (2016). https://doi.org/10.1007/s11302-015-9479-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-015-9479-y

Keywords

Navigation