Skip to main content
Log in

Expression of mediators of purinergic signaling in human liver cell lines

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Purinergic signaling regulates a diverse and biologically relevant group of processes in the liver. However, progress of research into functions regulated by purinergic signals in the liver has been hampered by the complexity of systems probed. Specifically, there are multiple liver cell subpopulations relevant to hepatic functions, and many of these have been effectively modeled in human cell lines. Furthermore, there are more than 20 genes relevant to purinergic signaling, each of which has distinct functions. Hence, we felt the need to categorize genes relevant to purinergic signaling in the best characterized human cell line models of liver cell subpopulations. Therefore, we investigated the expression of adenosine receptor, P2X receptor, P2Y receptor, and ecto-nucleotidase genes via RT-PCR in the following cell lines: LX-2, hTERT, FH11, HepG2, Huh7, H69, and MzChA-1. We believe that our findings will provide an excellent resource to investigators seeking to define functions of purinergic signals in liver physiology and liver disease pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Treyer A, Musch A (2013) Hepatocyte polarity. Compr Physiol 3:243–287

    PubMed Central  PubMed  Google Scholar 

  2. O’Hara SP, Tabibian JH, Splinter PL, LaRusso NF (2013) The dynamic biliary epithelia: molecules, pathways, and disease. J Hepatol 58:575–582

    Article  PubMed  Google Scholar 

  3. Dranoff JA, Wells RG (2010) Portal fibroblasts: underappreciated mediators of biliary fibrosis. Hepatology 51:1438–1444

    Article  PubMed Central  PubMed  Google Scholar 

  4. Puche JE, Saiman Y, Friedman SL (2013) Hepatic stellate cells and liver fibrosis. Compr Physiol 3:1473–1492

    Article  PubMed  Google Scholar 

  5. Onitsuka I, Tanaka M, Miyajima A (2010) Characterization and functional analyses of hepatic mesothelial cells in mouse liver development. Gastroenterology 138:1525–1535, 1535 e1521-1526

    Article  PubMed  Google Scholar 

  6. DeLeve LD (2013) Liver sinusoidal endothelial cells and liver regeneration. J Clin Invest 123:1861–1866

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Kolios G, Valatas V, Kouroumalis E (2006) Role of Kupffer cells in the pathogenesis of liver disease. World J Gastroenterol 12:7413–7420

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Zhan YT, An W (2010) Roles of liver innate immune cells in nonalcoholic fatty liver disease. World J Gastroenterol 16:4652–4660

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Beldi G, Enjyoji K, Wu Y, Miller L, Banz Y, Sun X, Robson SC (2008) The role of purinergic signaling in the liver and in transplantation: effects of extracellular nucleotides on hepatic graft vascular injury, rejection and metabolism. Front Biosci 13:2588–2603

    Article  PubMed Central  PubMed  Google Scholar 

  10. Vaughn BP, Robson SC, Burnstock G (2012) Pathological roles of purinergic signaling in the liver. J Hepatol 57:916–920

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Fausther M, Sevigny J (2011) Extracellular nucleosides and nucleotides regulate liver functions via a complex system of membrane proteins. C R Biol 334:100–117

    Article  CAS  PubMed  Google Scholar 

  12. Beldi G, Wu Y, Sun X, Imai M, Enjyoji K, Csizmadia E, Candinas D et al (2008) Regulated catalysis of extracellular nucleotides by vascular CD39/ENTPD1 is required for liver regeneration. Gastroenterology 135:1751–1760

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Gonzales E, Julien B, Serriere-Lanneau V, Nicou A, Doignon I, Lagoudakis L, Garcin I et al (2010) ATP release after partial hepatectomy regulates liver regeneration in the rat. J Hepatol 52:54–62

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Thevananther S, Sun H, Li D, Arjunan V, Awad SS, Wyllie S, Zimmerman TL et al (2004) Extracellular ATP activates c-jun N-terminal kinase signaling and cell cycle progression in hepatocytes. Hepatology 39:393–402

    Article  CAS  PubMed  Google Scholar 

  15. Emmett DS, Feranchak A, Kilic G, Puljak L, Miller B, Dolovcak S, McWilliams R et al (2008) Characterization of ionotrophic purinergic receptors in hepatocytes. Hepatology 47:698–705

    Article  CAS  PubMed  Google Scholar 

  16. Dranoff JA, Masyuk AI, Kruglov EA, LaRusso NF, Nathanson MH (2001) Polarized expression and function of P2Y ATP receptors in rat bile duct epithelia. Am J Physiol Gastrointest Liver Physiol 281:G1059–G1067

    CAS  PubMed  Google Scholar 

  17. Minagawa N, Nagata J, Shibao K, Masyuk AI, Gomes DA, Rodrigues MA, Lesage G et al (2007) Cyclic AMP regulates bicarbonate secretion in cholangiocytes through release of ATP into bile. Gastroenterology 133:1592–1602

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Jhandier MN, Kruglov EA, Lavoie EG, Sevigny J, Dranoff JA (2005) Portal fibroblasts regulate the proliferation of bile duct epithelia via expression of NTPDase2. J Biol Chem 280:22986–22992

    Article  CAS  PubMed  Google Scholar 

  19. Masyuk AI, Gradilone SA, Banales JM, Huang BQ, Masyuk TV, Lee SO, Splinter PL et al (2008) Cholangiocyte primary cilia are chemosensory organelles that detect biliary nucleotides via P2Y12 purinergic receptors. Am J Physiol Gastrointest Liver Physiol 295:G725–G734

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Dranoff JA, Kruglov EA, Abreu-Lanfranco O, Nguyen T, Arora G, Jain D (2007) Prevention of liver fibrosis by the purinoceptor antagonist pyridoxal-phosphate-6-azophenyl-2′,4′-disulfonate (PPADS). In Vivo 21:957–965

    CAS  PubMed  Google Scholar 

  21. Dranoff JA, Ogawa M, Kruglov EA, Gaca MD, Sevigny J, Robson SC, Wells RG (2004) Expression of P2Y nucleotide receptors and ectonucleotidases in quiescent and activated rat hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol 287:G417–G424

    Article  CAS  PubMed  Google Scholar 

  22. Hashmi AZ, Hakim W, Kruglov EA, Watanabe A, Watkins W, Dranoff JA, Mehal WZ (2007) Adenosine inhibits cytosolic calcium signals and chemotaxis in hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol 292:G395–G401

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Takemura S, Kawada N, Hirohashi K, Kinoshita H, Inoue M (1994) Nucleotide receptors in hepatic stellate cells of the rat. FEBS Lett 354:53–56

    Article  CAS  PubMed  Google Scholar 

  24. Chen JF, Eltzschig HK, Fredholm BB (2013) Adenosine receptors as drug targets—what are the challenges? Nat Rev Drug Discov 12:265–286

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Jacobson KA, Boeynaems JM (2010) P2Y nucleotide receptors: promise of therapeutic applications. Drug Discov Today 15:570–578

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. North RA, Jarvis MF (2013) P2X receptors as drug targets. Mol Pharmacol 83:759–769

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Knowles AF (2011) The GDA1_CD39 superfamily: NTPDases with diverse functions. Purinergic Signal 7:21–45

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Robson SC, Sevigny J, Zimmermann H (2006) The E-NTPDase family of ectonucleotidases: structure function relationships and pathophysiological significance. Purinergic Signal 2:409–430

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Zimmermann H, Zebisch M, Strater N (2012) Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal 8:437–502

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Strater N (2006) Ecto-5′-nucleotidase: structure function relationships. Purinergic Signal 2:343–350

    Article  PubMed Central  PubMed  Google Scholar 

  31. Buchet R, Millan JL, Magne D (2013) Multisystemic functions of alkaline phosphatases. Methods Mol Biol 1053:27–51

    Article  PubMed  Google Scholar 

  32. Burnstock G, Vaughn B, Robson SC (2014) Purinergic signalling in the liver in health and disease. Purinergic Signal 10:51–70

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Xu L, Hui AY, Albanis E, Arthur MJ, O’Byrne SM, Blaner WS, Mukherjee P et al (2005) Human hepatic stellate cell lines, LX-1 and LX-2: new tools for analysis of hepatic fibrosis. Gut 54:142–151

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Schnabl B, Choi YH, Olsen JC, Hagedorn CH, Brenner DA (2002) Immortal activated human hepatic stellate cells generated by ectopic telomerase expression. Lab Invest 82:323–333

    Article  CAS  PubMed  Google Scholar 

  35. Hong F, Tuyama A, Lee TF, Loke J, Agarwal R, Cheng X, Garg A et al (2009) Hepatic stellate cells express functional CXCR4: role in stromal cell-derived factor-1alpha-mediated stellate cell activation. Hepatology 49:2055–2067

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Knuth A, Gabbert H, Dippold W, Klein O, Sachsse W, Bitter-Suermann D, Prellwitz W et al (1985) Biliary adenocarcinoma. Characterisation of three new human tumor cell lines. J Hepatol 1:579–596

    Article  CAS  PubMed  Google Scholar 

  37. Knowles BB, Howe CC, Aden DP (1980) Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen. Science 209:497–499

    Article  CAS  PubMed  Google Scholar 

  38. Grubman SA, Perrone RD, Lee DW, Murray SL, Rogers LC, Wolkoff LI, Mulberg AE et al (1994) Regulation of intracellular pH by immortalized human intrahepatic biliary epithelial cell lines. Am J Physiol 266:G1060–G1070

    CAS  PubMed  Google Scholar 

  39. Nakabayashi H, Taketa K, Miyano K, Yamane T, Sato J (1982) Growth of human hepatoma cells lines with differentiated functions in chemically defined medium. Cancer Res 42:3858–3863

    CAS  PubMed  Google Scholar 

  40. Zsembery A, Spirli C, Granato A, LaRusso NF, Okolicsanyi L, Crepaldi G, Strazzabosco M (1998) Purinergic regulation of acid/base transport in human and rat biliary epithelial cell lines. Hepatology 28:914–920

    Article  CAS  PubMed  Google Scholar 

  41. Roman RM, Feranchak AP, Salter KD, Wang Y, Fitz JG (1999) Endogenous ATP release regulates Cl- secretion in cultured human and rat biliary epithelial cells. Am J Physiol 276:G1391–G1400

    CAS  PubMed  Google Scholar 

  42. Beldi G, Wu Y, Banz Y, Nowak M, Miller L, Enjyoji K, Haschemi A et al (2008) Natural killer T cell dysfunction in CD39-null mice protects against concanavalin A-induced hepatitis. Hepatology 48:841–852

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Ohta A, Sitkovsky M (2001) Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature 414:916–920

    Article  CAS  PubMed  Google Scholar 

  44. Kukulski F, Levesque SA, Sevigny J (2011) Impact of ectoenzymes on p2 and p1 receptor signaling. Adv Pharmacol 61:263–299

    Article  CAS  PubMed  Google Scholar 

  45. Graubardt N, Fahrner R, Trochsler M, Keogh A, Breu K, Furer C, Stroka D et al (2013) Promotion of liver regeneration by natural killer cells in a murine model is dependent on extracellular adenosine triphosphate phosphohydrolysis. Hepatology 57:1969–1979

    Article  CAS  PubMed  Google Scholar 

  46. Odashima M, Otaka M, Jin M, Komatsu K, Wada I, Matsuhashi T, Horikawa Y et al (2005) Selective A2A adenosine agonist ATL-146e attenuates acute lethal liver injury in mice. J Gastroenterol 40:526–529

    Article  CAS  PubMed  Google Scholar 

  47. Oliveira AG, Marques PE, Amaral SS, Quintao JL, Cogliati B, Dagli ML, Rogiers V et al (2013) Purinergic signalling during sterile liver injury. Liver Int 33:353–361

    Article  PubMed  Google Scholar 

  48. Hart ML, Much C, Gorzolla IC, Schittenhelm J, Kloor D, Stahl GL, Eltzschig HK (2008) Extracellular adenosine production by ecto-5′-nucleotidase protects during murine hepatic ischemic preconditioning. Gastroenterology 135:1739–1750, e1733

    Article  CAS  PubMed  Google Scholar 

  49. Henderson NC, Arnold TD, Katamura Y, Giacomini MM, Rodriguez JD, McCarty JH, Pellicoro A et al (2013) Targeting of alphav integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat Med 19:1617–1624

    Article  CAS  PubMed  Google Scholar 

  50. Mederacke I, Hsu CC, Troeger JS, Huebener P, Mu X, Dapito DH, Pradere JP et al (2013) Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat Commun 4:2823

    Article  PubMed Central  PubMed  Google Scholar 

  51. Iwaisako K, Brenner DA, Kisseleva T (2012) What’s new in liver fibrosis? The origin of myofibroblasts in liver fibrosis. J Gastroenterol Hepatol 27(Suppl 2):65–68

    Article  CAS  PubMed  Google Scholar 

  52. Boyer JL (2013) Bile formation and secretion. Compr Physiol 3:1035–1078

    PubMed Central  PubMed  Google Scholar 

  53. Schuppan D, Kim YO (2013) Evolving therapies for liver fibrosis. J Clin Invest 123:1887–1901

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Strazzabosco M, Fabris L, Spirli C (2005) Pathophysiology of cholangiopathies. J Clin Gastroenterol 39:S90–S102

    Article  PubMed  Google Scholar 

  55. Tacke F, Weiskirchen R (2012) Update on hepatic stellate cells: pathogenic role in liver fibrosis and novel isolation techniques. Expert Rev Gastroenterol Hepatol 6:67–80

    Article  CAS  PubMed  Google Scholar 

  56. Dranoff JA, Kruglov EA, Toure J, Braun N, Zimmermann H, Jain D, Knowles AF et al (2004) Ectonucleotidase NTPDase2 is selectively down-regulated in biliary cirrhosis. J Investig Med 52:475–482

    Article  CAS  PubMed  Google Scholar 

  57. Fausther M, Lecka J, Kukulski F, Levesque SA, Pelletier J, Zimmermann H, Dranoff JA et al (2007) Cloning, purification, and identification of the liver canalicular ecto-ATPase as NTPDase8. Am J Physiol Gastrointest Liver Physiol 292:G785–G795

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Fausther M, Sheung N, Saiman Y, Bansal MB, Dranoff JA (2012) Activated hepatic stellate cells upregulate transcription of ecto-5′-nucleotidase/CD73 via specific SP1 and SMAD promoter elements. Am J Physiol Gastrointest Liver Physiol 303:G904–G914

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan A. Dranoff.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goree, J.R., Lavoie, E.G., Fausther, M. et al. Expression of mediators of purinergic signaling in human liver cell lines. Purinergic Signalling 10, 631–638 (2014). https://doi.org/10.1007/s11302-014-9425-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-014-9425-4

Keywords

Navigation