Purinergic Signalling

, Volume 10, Issue 3, pp 441–453 | Cite as

A yeast screening method to decipher the interaction between the adenosine A2B receptor and the C-terminus of different G protein α-subunits

  • Rongfang Liu
  • Nick J. A. Groenewoud
  • Miriam C. Peeters
  • Eelke B. Lenselink
  • Ad P. IJzermanEmail author
Original Article


The expression of human G protein-coupled receptors (GPCRs) in Saccharomyces cerevisiae containing chimeric yeast/mammalian Gα subunits provides a useful tool for the study of GPCR activation. In this study, we used a one-GPCR-one-G protein yeast screening method in combination with molecular modeling and mutagenesis studies to decipher the interaction between GPCRs and the C-terminus of different α-subunits of G proteins. We chose the human adenosine A2B receptor (hA2BR) as a paradigm, a typical class A GPCR that shows promiscuous behavior in G protein coupling in this yeast system. The wild-type hA2BR and five mutant receptors were expressed in 8 yeast strains with different humanized G proteins, covering the four major classes: Gαi, Gαs, Gαq, and Gα12. Our experiments showed that a tyrosine residue (Y) at the C-terminus of the Gα subunit plays an important role in controlling the activation of GPCRs. Receptor residues R1033.50 and I1073.54 are vital too in G protein-coupling and the activation of the hA2BR, whereas L213IL3 is more important in G protein inactivation. Substitution of S2356.36 to alanine provided the most divergent G protein-coupling profile. Finally, L2366.37 substitution decreased receptor activation in all G protein pathways, although to a different extent. In conclusion, our findings shed light on the selectivity of receptor/G protein coupling, which may help in further understanding GPCR signaling.


G protein-coupled receptor G protein coupling Yeast screening Adenosine A2B receptor DRY motif 



Rongfang Liu thanks the China Scholarship Council (CSC) for her PhD scholarship. NWO provided a TOP grant to A.P. IJ. (714.011.001). The authors are grateful to Prof C.E. Müeller of Bonn University for the generous gift of [3H]PSB-603 and to Dr S. Dowell from GSK for providing the yeast strains and experimental protocols.


  1. 1.
    Oldham WM, Van Eps N, Preininger AM, Hubbell WL, Hamm HE (2006) Mechanism of the receptor-catalyzed activation of heterotrimeric G proteins. Nature structural & molecular biology 13(9):772–777CrossRefGoogle Scholar
  2. 2.
    Baltoumas FA, Theodoropoulou MC, Hamodrakas SJ (2013) Interactions of the alpha-subunits of heterotrimeric G-proteins with GPCRs, effectors and RGS proteins: a critical review and analysis of interacting surfaces, conformational shifts, structural diversity and electrostatic potentials. Journal of structural biology 182(3):209–218PubMedCrossRefGoogle Scholar
  3. 3.
    Fredholm BB, Arslan G, Halldner L, Kull B, Schulte G, Wasserman W (2000) Structure and function of adenosine receptors and their genes. Naunyn-Schmiedeberg’s archives of pharmacology 362(4–5):364–374PubMedCrossRefGoogle Scholar
  4. 4.
    Fredholm BB, Irenius E, Kull B, Schulte G (2001) Comparison of the potency of adenosine as an agonist at human adenosine receptors expressed in Chinese hamster ovary cells. Biochem Pharmacol 61(4):443–448PubMedCrossRefGoogle Scholar
  5. 5.
    Wei W, Du C, Lv J, Zhao G, Li Z, Wu Z, Haskó G, Xie X (2013) Blocking A2B adenosine receptor alleviates pathogenesis of experimental autoimmune encephalomyelitis via inhibition of IL-6 production and Th17 differentiation. The Journal of Immunology 190(1):138–146PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Wei Q, Costanzi S, Balasubramanian R, Gao Z-G, Jacobson KA (2013) A2B adenosine receptor blockade inhibits growth of prostate cancer cells. Purinergic signalling: 1–10Google Scholar
  7. 7.
    Stagg J, Divisekera U, McLaughlin N, Sharkey J, Pommey S, Denoyer D, Dwyer KM, Smyth MJ (2010) Anti-CD73 antibody therapy inhibits breast tumor growth and metastasis. Proc Natl Acad Sci 107(4):1547–1552PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Owen SJ, Massa HH, Rose’Meyer RB (2012) Loss of adenosine A2B receptor mediated relaxant responses in the aged female rat bladder; effects of dietary phytoestrogens. Naunyn-Schmiedeberg’s archives of pharmacology 385(5):539–549PubMedCrossRefGoogle Scholar
  9. 9.
    Cekic C, Sag D, Li Y, Theodorescu D, Strieter RM, Linden J (2012) Adenosine A2B receptor blockade slows growth of bladder and breast tumors. The Journal of Immunology 188(1):198–205PubMedCrossRefGoogle Scholar
  10. 10.
    Koscsó B, Trepakov A, Csóka B, Németh ZH, Pacher P, Eltzschig HK, Haskó G (2013) Stimulation of A2B adenosine receptors protects against trauma–hemorrhagic shock-induced lung injury. Purinergic signalling: 1–6Google Scholar
  11. 11.
    Bot I, De Vries H, Korporaal SJ, Foks AC, Bot M, Van Veldhoven J, Ter Borg MN, Van Santbrink PJ, Van Berkel TJ, Kuiper J, IJzerman AP (2012) Adenosine A2B receptor agonism inhibits neointimal lesion development after arterial injury in apolipoprotein E-deficient mice. Arteriosclerosis, thrombosis, and vascular biology 32(9):2197–2205PubMedCrossRefGoogle Scholar
  12. 12.
    Pausch MH (1997) G-protein-coupled receptors in Saccharomyces cerevisiae: high-throughput screening assays for drug discovery. Trends in biotechnology 15(12):487–494PubMedCrossRefGoogle Scholar
  13. 13.
    Peeters MC, Li Q, van Westen GJP, IJzerman AP (2011) Three “hotspots” important for adenosine A 2B receptor activation: a mutational analysis of transmembrane domains 4 and 5 and the second extracellular loop. Purinergic Signalling:1–16Google Scholar
  14. 14.
    Mathew E, Ding F-X, Naider F, Dumont ME (2013) Functional fusions of T4 lysozyme in the third intracellular loop of a G protein-coupled receptor identified by a random screening approach in yeast. Protein Engineering Design and Selection 26(1):59–71CrossRefGoogle Scholar
  15. 15.
    Jaeschke H, Kleinau G, Sontheimer J, Mueller S, Krause G, Paschke R (2008) Preferences of transmembrane helices for cooperative amplification of G α s and G α q signaling of the thyrotropin receptor. Cellular and molecular life sciences 65(24):4028–4038PubMedCrossRefGoogle Scholar
  16. 16.
    Evans BJ, Wang Z, Broach JR, Oishi S, Fujii N, Peiper SC (2009) Expression of CXCR4, a G-protein-coupled receptor for CXCL12 in yeast: identification of new-generation inverse agonists. Methods in enzymology 460:399–412PubMedCrossRefGoogle Scholar
  17. 17.
    Minic J, Sautel M, Salesse R, Pajot-Augy E (2005) Yeast system as a screening tool for pharmacological assessment of G protein coupled receptors. Current medicinal chemistry 12(8):961–969PubMedCrossRefGoogle Scholar
  18. 18.
    Stewart GD, Valant C, Dowell SJ, Mijaljica D, Devenish RJ, Scammells PJ, Sexton PM, Christopoulos A (2009) Determination of adenosine A1 receptor agonist and antagonist pharmacology using Saccharomyces cerevisiae: implications for ligand screening and functional selectivity. Journal of Pharmacology and Experimental Therapeutics 331(1):277–286PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Brown AJ, Dyos SL, Whiteway MS, White JH, Watson MAE, Marzioch M, Clare JJ, Cousens DJ, Paddon C, Plumpton C (2000) Functional coupling of mammalian receptors to the yeast mating pathway using novel yeast/mammalian G protein α subunit chimeras. Yeast 16(1):11–22PubMedCrossRefGoogle Scholar
  20. 20.
    Dowell SJ, Brown AJ (2009) Yeast assays for G protein-coupled receptors. G Protein-Coupled Receptors in Drug Discovery 552:213–229CrossRefGoogle Scholar
  21. 21.
    Dowell SJ (2002) Yeast assays for G-protein-coupled receptors. receptors and channels 8(343–352)Google Scholar
  22. 22.
    Cardozo T, Totrov M, Abagyan R (2004) Homology modeling by the ICM method. Proteins: Structure, Function, and Bioinformatics 23(3):403–414CrossRefGoogle Scholar
  23. 23.
    Rasmussen SG, DeVree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS, Thian FS, Chae PS, Pardon E, Calinski D (2011) Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature 477(7366):549–555PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    DeLano DW (The PyMOL Molecular Graphics System, Version 1.5. 0.4 Schrödinger, LLC.)Google Scholar
  25. 25.
    Gietz D, St Jean A, Woods RA, Schiestl RH (1992) Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res 20(6):1425PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Li Q, Ye K, Blad CC, den Dulk H, Brouwer J, IJzerman AP, Beukers MW (2007) ZM241385, DPCPX, MRS1706 are inverse agonists with different relative intrinsic efficacies on constitutively active mutants of the human adenosine A2B receptor. Journal of Pharmacology and Experimental Therapeutics 320(2):637–645PubMedCrossRefGoogle Scholar
  27. 27.
    Feoktistov I, Goldstein A, Sheller JR, Schwartz LB, Biaggioni I (2003) Immunological characterization of A2B adenosine receptors in human mast cells. Drug development research 58(4):461–471CrossRefGoogle Scholar
  28. 28.
    Peeters M, Wisse L, Dinaj A, Vroling B, Vriend G, IJzerman A (2012) The role of the second and third extracellular loops of the adenosine A1 receptor in activation and allosteric modulation. Biochem Pharmacol 84:76–87PubMedCrossRefGoogle Scholar
  29. 29.
    Venkatakrishnan A, Deupi X, Lebon G, Tate CG, Schertler GF, Babu MM (2013) Molecular signatures of G-protein-coupled receptors. Nature 494(7436):185–194PubMedCrossRefGoogle Scholar
  30. 30.
    Scheerer P, Park JH, Hildebrand PW, Kim YJ, Krauß N, Choe H-W, Hofmann KP, Ernst OP (2008) Crystal structure of opsin in its G-protein-interacting conformation. Nature 455(7212):497–502PubMedCrossRefGoogle Scholar
  31. 31.
    Fredholm BB, IJzerman AP, Jacobson KA, Linden J, Müller CE (2011) International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors—an update. Pharmacol Rev 63(1):1–34Google Scholar
  32. 32.
    Ballesteros J, Kitanovic S, Guarnieri F, Davies P, Fromme BJ, Konvicka K, Chi L, Millar RP, Davidson JS, Weinstein H (1998) Functional microdomains in G-protein-coupled receptors the conserved arginine-cage motif in the gonadotropin-releasing hormone receptor. Journal of Biological Chemistry 273(17):10445–10453PubMedCrossRefGoogle Scholar
  33. 33.
    Ballesteros JA, Weinstein H (1995) Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods in neurosciences 25:366–428CrossRefGoogle Scholar
  34. 34.
    Bae H, Cabrera-Vera TM, Depree KM, Graber SG, Hamm HE (1999) Two amino acids within the α4 helix of Gαi1 mediate coupling with 5-hydroxytryptamine1B receptors. Journal of Biological Chemistry 274(21):14963–14971PubMedCrossRefGoogle Scholar
  35. 35.
    Bae H, Anderson K, Flood LA, Skiba NP, Hamm HE, Graber SG (1997) Molecular determinants of selectivity in 5-hydroxytryptamine1B receptor-G protein interactions. Journal of Biological Chemistry 272(51):32071–32077PubMedCrossRefGoogle Scholar
  36. 36.
    Taylor JM, Jacob-Mosier GG, Lawton RG, Remmers AE, Neubig RR (1994) Binding of an alpha 2 adrenergic receptor third intracellular loop peptide to G beta and the amino terminus of G alpha. Journal of Biological Chemistry 269(44):27618–27624PubMedGoogle Scholar
  37. 37.
    Blahos J, Mary S, Perroy J, de Colle C, Brabet I, Bockaert J, Pin J-P (1998) Extreme C terminus of G protein α-subunits contains a site that discriminates between Gi-coupled metabotropic glutamate receptors. Journal of Biological Chemistry 273(40):25765–25769PubMedCrossRefGoogle Scholar
  38. 38.
    Kling RC, Lanig H, Clark T, Gmeiner P (2013) Active-state models of ternary GPCR complexes: determinants of selective receptor-G-protein coupling. PLOS ONE 8(6):e67244PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Thimm D, Schiedel AC, Sherbiny FF, Hinz S, Hochheiser K, Bertarelli DC, Maaß A, Müller CE (2013) Ligand-specific binding and activation of the human adenosine A2B receptor. Biochemistry 52(4):726–740PubMedCrossRefGoogle Scholar
  40. 40.
    Vroling B, Sanders M, Baakman C, Borrmann A, Verhoeven S, Klomp J, Oliveira L, de Vlieg J, Vriend G (2011) GPCRDB: information system for G protein-coupled receptors. Nucleic acids research 39(suppl 1):D309–D319PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Vogel R, Mahalingam M, Lüdeke S, Huber T, Siebert F, Sakmar TP (2008) Functional role of the “ionic lock”—an interhelical hydrogen-bond network in family A heptahelical receptors. Journal of molecular biology 380(4):648–655PubMedCrossRefGoogle Scholar
  42. 42.
    Scheer A, Fanelli F, Costa T, De Benedetti P, Cotecchia S (1996) Constitutively active mutants of the alpha 1B-adrenergic receptor: role of highly conserved polar amino acids in receptor activation. EMBO J 15(14):3566PubMedCentralPubMedGoogle Scholar
  43. 43.
    Flanagan CA (2005) A GPCR that is not “DRY”. Molecular pharmacology 68(1):1–3PubMedGoogle Scholar
  44. 44.
    Chen A, Gao Z-G, Barak D, Liang BT, Jacobson KA (2001) Constitutive activation of A3 adenosine receptors by site-directed mutagenesis. Biochemical and biophysical research communications 284(3):596–601PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Schneider EH, Schnell D, Strasser A, Dove S, Seifert R (2010) Impact of the DRY motif and the missing “ionic lock” on constitutive activity and G-protein coupling of the human histamine H4 receptor. Journal of Pharmacology and Experimental Therapeutics 333(2):382–392PubMedCrossRefGoogle Scholar
  46. 46.
    Scheer A, Costa T, Fanelli F, De Benedetti PG, Mhaouty-Kodja S, Abuin L, Nenniger-Tosato M, Cotecchia S (2000) Mutational analysis of the highly conserved arginine within the Glu/Asp-Arg-Tyr motif of the α1b-adrenergic receptor: effects on receptor isomerization and activation. Molecular pharmacology 57(2):219–231PubMedGoogle Scholar
  47. 47.
    Högger P, Shockley MS, Lameh J, Sadée W (1995) Activating and inactivating mutations in N- and C-terminal i3 loop junctions of muscarinic acetylcholine Hm1 receptors. Journal of Biological Chemistry 270(13):7405–7410PubMedCrossRefGoogle Scholar
  48. 48.
    Doré AS, Robertson N, Errey JC, Ng I, Hollenstein K, Tehan B, Hurrell E, Bennett K, Congreve M, Magnani F (2011) Structure of the adenosine A(2A) receptor in complex with ZM241385 and the xanthines XAC and caffeine. Structure 19(9):1283–1293PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Simon MI, Strathmann MP, Gautam N (1991) Diversity of G proteins in signal transduction. Science 252(5007):802–808PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Rongfang Liu
    • 1
  • Nick J. A. Groenewoud
    • 1
  • Miriam C. Peeters
    • 1
  • Eelke B. Lenselink
    • 1
  • Ad P. IJzerman
    • 1
    Email author
  1. 1.Division of Medicinal Chemistry, Leiden Academic Centre for Drug ResearchLeiden UniversityLeidenNetherlands

Personalised recommendations