Skip to main content

Guanosine negatively modulates the gastric motor function in mouse


The aim of the present study was to evaluate if guanine-based purines may affect the gastric motor function in mouse. Thus, the influence of guanosine on the gastric emptying rate in vivo was determined and its effects on spontaneous gastric mechanical activity, detected as changes of the intraluminal pressure, were analyzed in vitro before and after different treatments. Gastric gavage of guanosine (1.75–10 mg/kg) delayed the gastric emptying. Guanosine (30 μM–1 mM) induced a concentration-dependent relaxation of isolated stomach, which was not affected by the inhibition of the purine nucleoside phosphorylase enzyme by 4′-deaza-1′-aza-2′-deoxy-1′-(9-methylene)-immucillin-H. The inhibitory response was antagonized by S-(4-nitrobenzyl)-6-thioinosine, a membrane nucleoside transporter inhibitor, but not affected by 9-chloro-2-(2-furanyl)-[1,2,4]triazolo[1,5-c]quinazolin-5-amine, a nonselective adenosine receptor antagonist, or by tetrodotoxin, a blocker of neuronal voltage-dependent Na+ channels. Moreover, guanosine-induced effects persisted in the presence of 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, an inhibitor of soluble guanylyl cyclase or tetraethylammonium, a nonselective potassium channel blocker, but they were progressively reduced by increasing concentrations of 2′5′dideoxyadenosine, an adenylyl cyclase inhibitor. Lastly, the levels of cyclic adenosine monophosphate (cAMP), measured by ELISA, in gastric full thickness preparations were increased by guanosine. In conclusion, our data indicate that, in mouse, guanosine is able to modulate negatively the gastric motor function, reducing gastric emptying and inducing muscular relaxation. The latter is dependent by its cellular uptake and involves adenylyl cyclase activation and increase in cAMP intracellular levels, while it is independent on neural action potentials, adenosine receptors, and K+ channel activation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Fredholm BB, Vernet L (1979) Release of 3H-nucleosides from 3H-adenine labelled hypothalamic synaptosomes. Acta Physiol Scand 106:97–107

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Di Iorio P, Ballerini P, Caciagli F, Ciccarelli R (1998) Purinoceptor-mediated modulation of purine and neurotransmitter release from nervous tissue. Pharmacol Res 37:169–178

    PubMed  Article  Google Scholar 

  3. 3.

    Ciccarelli R, Di IP, Giuliani P, D’Alimonte I, Ballerini P, Caciagli F, Rathbone MP (1999) Rat cultured astrocytes release guanine-based purines in basal conditions and after hypoxia/hypoglycemia. Glia 25:93–98

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Schmidt AP, Lara DR, Souza DO (2007) Proposal of a guanine-based purinergic system in the mammalian central nervous system. Pharmacol Ther 116:401–416

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Rathbone M, Pilutti L, Caciagli F, Jiang S (2008) Neurotrophic effects of extracellular guanosine. Nucleosides Nucleotides Nucleic Acids 27:666–672

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Kim JK, Rathbone MP, Middlemiss PJ, Hughes DW, Smith RW (1991) Purinergic stimulation of astroblast proliferation: guanosine and its nucleotides stimulate cell division in chick astroblasts. J Neurosci Res 28:442–455

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Ciccarelli R, Di Iorio P, D’Alimonte I, Giuliani P, Florio T, Caciagli F, Middlemiss PJ, Rathbone MP (2000) Cultured astrocyte proliferation induced by extracellular guanosine involves endogenous adenosine and is raised by the co-presence of microglia. Glia 29:202–211

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Rathbone MP, Middlemiss PJ, Gysbers JW, Andrew C, Herman MA, Reed JK, Ciccarelli R, Di IP, Caciagli F (1999) Trophic effects of purines in neurons and glial cells. Prog Neurobiol 59:663–690

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Middlemiss DN, Hutson PH (1990) Measurement of the in vitro release of endogenous monoamine neurotransmitters as a means of identification of prejunctional receptors. J Neurosci Methods 34:23–28

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Rathbone MP, Middlemiss PJ, Gysbers JW, DeForge S, Costello P, Del Maestro RF (1992) Purine nucleosides and nucleotides stimulate proliferation of a wide range of cell types. In Vitro Cell Dev Biol 28A:529–536

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Rathbone MP, Christjanson L, DeForge S, Deluca B, Gysbers JW, Hindley S, Jovetich M, Middlemiss P, Takhal S (1992) Extracellular purine nucleosides stimulate cell division and morphogenesis: pathological and physiological implications. Med Hypotheses 37:232–240

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Deutsch SI, Rosse RB, Long KD, Gaskins BL, Mastropaolo J (2008) Guanosine possesses specific modulatory effects on NMDA receptor-mediated neurotransmission in intact mice. Eur Neuropsychopharmacol 18:299–302

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Roesler R, Vianna MR, Lara DR, Izquierdo I, Schmidt AP, Souza DO (2000) Guanosine impairs inhibitory avoidance performance in rats. NeuroReport 11:2537–2540

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Gysbers JW, Rathbone MP (1992) Guanosine enhances NGF-stimulated neurite outgrowth in PC12 cells. NeuroReport 3:997–1000

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Traversa U, Bombi G, Di Iorio P, Ciccarelli R, Werstiuk ES, Rathbone MP (2002) Specific [(3)H]-guanosine binding sites in rat brain membranes. Br J Pharmacol 135:969–976

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  16. 16.

    Traversa U, Bombi G, Camaioni E, Macchiarulo A, Costantino G, Palmieri C, Caciagli F, Pellicciari R (2003) Rat brain guanosine binding site. Biological studies and pseudo-receptor construction. Bioorg Med Chem 11:5417–5425

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Vuorinen P, Porsti I, Metsa-Ketela T, Manninen V, Vapaatalo H, Laustiola KE (1991) Modification of nitrovasodilator effects on vascular smooth muscle by exogenous GTP and guanosine. J Cardiovasc Pharmacol 18:871–877

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Vuorinen P, Wu X, Arvola P, Vapaatalo H, Porsti I (1994) Effects of P1 and P2Y purinoceptor antagonists on endothelium-dependent and -independent relaxations of rat mesenteric artery to GTP and guanosine. Br J Pharmacol 112:71–74

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  19. 19.

    Zizzo MG, Mulè F, Mastropaolo M, Condorelli DF, Belluardo N, Serio R (2011) Can guanine-based purines be considered modulators of intestinal motility in rodents? Eur J Pharmacol 650:350–355

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Giaroni C, Knight GE, Ruan HZ, Glass R, Bardini M, Lecchini S, Frigo G, Burnstock G (2002) P2 receptors in the murine gastrointestinal tract. Neuropharmacology 43:1313–1323

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Mulè F, Naccari D, Serio R (2005) Evidence for the presence of P2y and P2x receptors with different functions in mouse stomach. Eur J Pharmacol 513:135–140

    PubMed  Article  Google Scholar 

  22. 22.

    Osinski MA, Seifert TR, Cox BF, Gintant GA (2002) An improved method of evaluation of drug-evoked changes in gastric emptying in mice. J Pharmacol Toxicol Methods 47:115–120

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Lewandowicz A, Tyler PC, Evans GB, Furneaux RH, Schramm VL (2003) Achieving the ultimate physiological goal in transition state analogue inhibitors for purine nucleoside phosphorylase. J Biol Chem 278(34):31465–31468

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Clinch K, Evans GB, Fröhlich RF, Furneaux RH, Kelly PM, Legentil L, Murkin AS, Li L, Schramm VL, Tyler PC, Woolhouse AD (2009) Third-generation immucillins: syntheses and bioactivities of acyclic immucillin inhibitors of human purine nucleoside phosphorylase. J Med Chem 52(4):1126–1143

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  25. 25.

    Baldassano S, Tesoriere L, Rotondo A, Serio R, Livrea MA, Mulè F (2010) Inhibition of the mechanical activity of mouse ileum by cactus pear (Opuntia ficus indica, L, Mill) fruit extract and its pigment indicaxanthin. J Agric Food Chem 58:7565–7571

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Baldassano S, Zizzo MG, Serio R, Mulè F (2009) Interaction between cannabinoid CB1 receptors and endogenous ATP in the control of spontaneous mechanical activity in mouse ileum. Br J Pharmacol 158:243–251

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  27. 27.

    Rotondo A, Serio R, Mulè F (2009) Gastric relaxation induced by apigenin and quercetin: analysis of the mechanism of action. Life Sci 85:85–90

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Mulè F, Amato A, Baldassano S, Serio R (2007) Involvement of CB1 and CB2 receptors in the modulation of cholinergic neurotransmission in mouse gastric preparations. Pharmacol Res 56(3):185–192

    PubMed  Article  Google Scholar 

  29. 29.

    Bornstein JC (2008) Purinergic mechanisms in the control of gastrointestinal motility. Purinergic Signal 4:197–212

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  30. 30.

    Antonioli L, Fornai M, Colucci R, Ghisu N, Tuccori M, Del TM, Blandizzi C (2008) Regulation of enteric functions by adenosine: pathophysiological and pharmacological implications. Pharmacol Ther 120:233–253

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Kolachala VL, Bajaj R, Chalasani M, Sitaraman SV (2008) Purinergic receptors in gastrointestinal inflammation. Am J Physiol Gastrointest Liver Physiol 294:G401–G410

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Kraupp M, Marz R (1995) Membrane transport of nucleobases: interaction with inhibitors. Gen Pharmacol 26:1185–1190

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Makhlouf GM, Murthy KS (1997) Signal transduction in gastrointestinal smooth muscle. Cell Signal 9:269–276

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Diamond J (1978) Role of cyclic nucleotides in control of smooth muscle contraction. Adv Cyclic Nucleotide Res 9:327–340

    PubMed  CAS  Google Scholar 

  35. 35.

    Bau C, Middlemiss PJ, Hindley S, Jiang S, Ciccarelli R, Caciagli F, Diiorio P, Werstiuk ES, Rathbone MP (2005) Guanosine stimulates neurite outgrowth in PC12 cells via activation of heme oxygenase and cyclic GMP. Purinergic Signal 1:161–172

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  36. 36.

    Nagasawa K, Kawasaki F, Tanaka A, Nagai K, Fujimoto S (2007) Characterization of guanine and guanosine transport in primary cultured rat cortical astrocytes and neurons. Glia 55:1397–1404

    PubMed  Article  Google Scholar 

  37. 37.

    Buck J, Sinclair ML, Schapal L, Cann MJ, Levin LR (1999) Cytosolic adenylyl cyclase defines a unique signaling molecule in mammals. Proc Natl Acad Sci U S A 96:79–84

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  38. 38.

    Londos C, Wolff J (1977) Two distinct adenosine-sensitive sites on adenylate cyclase. Proc Natl Acad Sci U S A 74:5482–5486

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  39. 39.

    Oleskovicz SP, Martins WC, Leal RB, Tasca CI (2008) Mechanism of guanosine-induced neuroprotection in rat hippocampal slices submitted to oxygen–glucose deprivation. Neurochem Int 52:411–418

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Zizzo MG, Mulè F, Serio R (2005) Mechanisms underlying the inhibitory effects induced by pituitary adenylate cyclase-activating peptide in mouse ileum. Eur J Pharmacol 521:133–138

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Mulè F, Serio R (2003) NANC inhibitory neurotransmission in mouse isolated stomach: involvement of nitric oxide, ATP and vasoactive intestinal polypeptide. Br J Pharmacol 140:431–437

    PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Serio R, Alessandro M, Zizzo MG, Tamburello MP, Mulè F (2003) Neurotransmitters involved in the fast inhibitory junction potentials in mouse distal colon. Eur J Pharmacol 460:183–190

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Zizzo MG, Bonomo A, Belluardo N, Mulè F, Serio R (2009) A1 receptors mediate adenosine inhibitory effects in mouse ileum via activation of potassium channels. Life Sci 84:772–778

    PubMed  Article  CAS  Google Scholar 

Download references


This work was supported by a grant from Ministero dell’Università e della Ricerca Scientifica—Italy.

Author information



Corresponding author

Correspondence to Rosa Serio.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zizzo, M.G., Mulè, F., Amato, A. et al. Guanosine negatively modulates the gastric motor function in mouse. Purinergic Signalling 9, 655–661 (2013).

Download citation


  • Stomach
  • Guanosine
  • Endoluminal pressure
  • Muscular relaxation
  • Gastric emptying
  • Mouse