Skip to main content
Log in

Characterization of new G protein-coupled adenine receptors in mouse and hamster

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

The nucleobase adenine has previously been reported to activate G protein-coupled receptors in rat and mouse. Adenine receptors (AdeR) thus constitute a new family of purine receptors, for which the designation “P0-receptors” has been suggested. We now describe the cloning and characterization of two new members of the AdeR family from mouse (MrgA10, termed mAde1R) and hamster (cAdeR). Both receptors were expressed in Sf9 insect cells, and radioligand binding studies were performed using [3H]adenine. Specific binding of the radioligand was detected in transfected, but not in untransfected cells, and K D values of 286 nM (mAde1R, B max 1.18 pmol/mg protein) and 301 nM (cAdeR, B max 17.7 pmol/mg protein), respectively, were determined. A series of adenine derivatives was investigated in competition binding assays. Minor structural modifications generally led to a reduction or loss of affinity, with one exception: 2-fluoroadenine was at least as potent as adenine itself at the cAdeR. Structure–activity relationships at all AdeR orthologs and subtypes investigated so far were similar, but not identical. For functional analyses, the cAdeR was homologously expressed in Chinese hamster ovary (CHO) cells, while the mAde1R was heterologously expressed in 1321N1 astrocytoma cells. Like the previously described AdeRs from rat (rAdeR) and mouse (mAde2R), the mAde1R (EC50 9.77 nM) and the cAdeR (EC50 51.6 nM) were coupled to inhibition of adenylate cyclase. In addition, the cAdeR from hamster expressed in CHO cells produced an increase in intracellular calcium concentrations (EC50 6.24 nM) and was found to be additionally coupled to Gq proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Borrmann T, Abdelrahman A, Volpini R, Lambertucci C, Alksnis E, Gorzalka S, Knospe M, Schiedel AC, Cristalli G, Müller CE (2009) Structure–activity relationships of adenine and deazaadenine derivatives as ligands for adenine receptors, a new purinergic receptor family. J Med Chem 52:5974–5989

    Article  PubMed  CAS  Google Scholar 

  2. Bender E, Buist A, Jurzak M, Langlois X, Baggerman G, Verhasselt P, Ercken M, Guo HQ, Wintmolders C, Van den Wyngaert I, Van Oers I, Schoofs L, Luyten W (2002) Characterization of an orphan G protein-coupled receptor localized in the dorsal root ganglia reveals adenine as a signaling molecule. Proc Natl Acad Sci USA 99:8573–8578

    Article  PubMed  CAS  Google Scholar 

  3. Gorzalka S, Vittori S, Volpini R, Cristalli G, von Kügelgen I, Müller CE (2005) Evidence for the functional expression and pharmacological characterization of adenine receptors in native cells and tissues. Mol Pharmacol 67:955–964

    Article  PubMed  CAS  Google Scholar 

  4. von Kügelgen I, Schiedel AC, Hoffmann K, Alsdorf BB, Abdelrahman A, Müller CE (2008) Cloning and functional expression of a novel Gi protein-coupled receptor for adenine from mouse brain. Mol Pharmacol 73:469–477

    Article  Google Scholar 

  5. Brunschweiger A, Müller CE (2006) P2 receptors activated by uracil nucleotides—an update. Curr Med Chem 13:289–312

    Article  PubMed  CAS  Google Scholar 

  6. Burnstock G (2007) Purine and pyrimidine receptors. Cell Mol Life Sci S 64:1471–1483

    Article  CAS  Google Scholar 

  7. Fredholm BB, IJzerman AP, Jacobson KA, Linden J, Müller CE (2011) International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors—an update. Pharmacol Rev 63:1–34

    Article  PubMed  CAS  Google Scholar 

  8. Jacobson KA, Gao ZG (2006) Adenosine receptors as therapeutic targets. Nat Rev Drug Discov 5:247–264

    Article  PubMed  CAS  Google Scholar 

  9. Matthews EA, Dickenson AH (2004) Effects of spinally administered adenine on dorsal horn neuronal responses in a rat model of inflammation. Neurosci Lett 356:211–214

    Article  PubMed  CAS  Google Scholar 

  10. Watanabe S, Ikekita M, Nakata H (2005) Identification of specific [3H]adenine-binding sites in rat brain membranes. J Biochem (Tokyo) 137:323–329

    Article  CAS  Google Scholar 

  11. Sichardt K, Nieber K (2008) Function of adenine receptors and interactions with adenosine A1 receptors in the rat cingulate cortex. Purinergic Signal 4(Suppl 1):1–210

    Google Scholar 

  12. Berger F, Sichardt K, Borrmann T, Müller CE, Nieber K (2010) Functional characterisation of adenine and the new adenine receptor ligands PSB-09073 and PSB-08162 in the rat cingulate cortex. Purinergic Signal 4(Suppl 5):S44

    Google Scholar 

  13. Watanabe S, Yoshimi Y, Ikekita M (2003) Neuroprotective effect of adenine on Purkinje cell survival in rat cerebellar primary cultures. J Neurosci Res 74:754–759

    Article  PubMed  CAS  Google Scholar 

  14. Yoshimi Y, Watanabe S, Shinomiya T, Makino A, Toyoda M, Ikekita M (2003) Nucleobase adenine as a trophic factor acting on Purkinje cells. Brain Res 991:113–122

    Article  PubMed  CAS  Google Scholar 

  15. Slominska EM, Szolkiewicz M, Smolenski RT, Rutkowski B, Swierczynski J (2002) High plasma adenine concentration in chronic renal failure and its relation to erythrocyte ATP. Nephron 91:286–291

    Article  PubMed  CAS  Google Scholar 

  16. Wengert M, Adao-Novaes J, Assaife-Lopes N, Leao-Ferreira LR, Caruso-Neves C (2007) Adenine-induced inhibition of Na+-ATPase activity: evidence for involvement of the Gi protein-coupled receptor in the cAMP signaling pathway. Arch Biochem Biophys 467:261–267

    Article  PubMed  CAS  Google Scholar 

  17. Kishore BK, Zhang Y, Pop IL, Gevorgyan H, Müller CM, Peti-Peterdi J (2012) Cellular localization of P0 (adenine) receptor in rat kidney. FASEB J 26:688.683

    Google Scholar 

  18. Peti-Peterdi J, Zhang Y, Gevorgyan A, Kohan DE, Müller CM, Kishore BK (2012) Functional expression of P0 (adenine) receptor in the collecting duct of intercalated cells in rat and mouse. J Am Soc Nephrol 23:611A

    Google Scholar 

  19. Watanabe A, Sohail MA, Gautam S, Gomes DA, Mehal WZ (2012) Adenine induces differentiation of rat hepatic stellate cells. Dig Dis Sci 57:2371–2378

    Article  PubMed  CAS  Google Scholar 

  20. Dong X, Han S, Zylka MJ, Simon MI, Anderson DJ (2001) A diverse family of GPCRs expressed in specific subsets of nociceptive sensory neurons. Cell 106:619–632

    Article  PubMed  CAS  Google Scholar 

  21. Burstein ES, Ott TR, Feddock M, Ma JN, Fuhs S, Wong S, Schiffer HH, Brann MR, Nash NR (2006) Characterization of the Mas-related gene family: structural and functional conservation of human and rhesus MrgX receptors. Br J Pharmacol 147:73–82

    Article  PubMed  CAS  Google Scholar 

  22. Han SK, Dong X, Hwang JI, Zylka MJ, Anderson DJ, Simon MI (2002) Orphan G protein-coupled receptors MrgA1 and MrgC11 are distinctively activated by RF-amide-related peptides through the Gαq/11 pathway. Proc Natl Acad Sci U S A 99:14740–14745

    Article  PubMed  CAS  Google Scholar 

  23. Seibt BF, Schiedel AC, Thimm D, Hinz S, Sherbiny FF, Müller CE (2013) The second extracellular loop of GPCRs determines subtype-selectivity and controls efficacy as evidenced by loop exchange studies at A2 adenosine receptors. Biochem Pharmacol 85:1317–1329

    Google Scholar 

  24. Schiedel AC, Hinz S, Thimm D, Sherbiny F, Borrmann T, Maaß A, Müller CE (2011) The four cysteine residues in the second extracellular loop of the human adenosine A2B receptor: role in ligand binding and receptor function. Biochem Pharmacol 82:389–399

    Article  PubMed  CAS  Google Scholar 

  25. Nordstedt C, Fredholm BB (1990) A modification of a protein-binding method for rapid quantification of cAMP in cell-culture supernatants and body fluid. Anal Biochem 189:231–234

    Article  PubMed  CAS  Google Scholar 

  26. Rempel V, Volz N, Hinz S, Karcz T, Meliciani I, Nieger M, Wenzel W, Bräse S, Müller CE (2012) 7-Alkyl-3-benzylcoumarins: a versatile scaffold for the development of potent and selective cannabinoid receptor agonists and antagonists. J Med Chem 55:7967–7977

    Article  PubMed  CAS  Google Scholar 

  27. Hillmann P, Ko GY, Spinrath A, Raulf A, von Kügelgen I, Wolff SC, Nicholas RA, Kostenis E, Höltje HD, Müller CE (2009) Key determinants of nucleotide-activated G protein-coupled P2Y2 receptor function revealed by chemical and pharmacological experiments, mutagenesis and homology modeling. J Med Chem 52:2762–2775

    Article  PubMed  CAS  Google Scholar 

  28. Schiedel AC, Meyer H, Alsdorf BB, Gorzalka S, Brüssel H, Müller CE (2007) [3H] Adenine is a suitable radioligand for the labeling of G protein-coupled adenine receptors but shows high affinity to bacterial contaminations in buffer solutions. Purinergic Signal 3:347–358

    Article  PubMed  CAS  Google Scholar 

  29. Gloriam DE, Fredriksson R, Schiöth HB (2007) The G protein-coupled receptor subset of the rat genome. BMC Genomics 8:338

    Article  PubMed  Google Scholar 

  30. Strotmann R, Schrock K, Boselt I, Staubert C, Russ A, Schöneberg T (2011) Evolution of GPCR: change and continuity. Mol Cell Endocrinol 331:170–178

    Article  PubMed  CAS  Google Scholar 

  31. Zylka MJ, Dong X, Southwell AL, Anderson DJ (2003) Atypical expansion in mice of the sensory neuron-specific Mrg G protein-coupled receptor family. Proc Natl Acad Sci U S A 100:10043–10048

    Article  PubMed  CAS  Google Scholar 

  32. Schneider EH, Seifert R (2010) Sf9 cells: a versatile model system to investigate the pharmacological properties of G protein-coupled receptors. Pharmacol Ther 128:387–418

    Article  PubMed  CAS  Google Scholar 

  33. Clapham DE, Neer EJ (1997) G protein βγ subunits. Annu Rev Pharmacol Toxicol 37:167–203

    Article  PubMed  CAS  Google Scholar 

  34. Adapala RK, Talasila PK, Bratz IN, Zhang DX, Suzuki M, Meszaros JG, Thodeti CK (2011) PKCα mediates acetylcholine-induced activation of TRPV4-dependent calcium influx in endothelial cells. Am J Physiol Heart Circ Physiol 301:757–765

    Article  Google Scholar 

  35. Köse M, Schiedel AC (2009) Nucleoside/nucleobase transporters: drug targets of the future? Future Med Chem 1:303–326

    Article  PubMed  Google Scholar 

  36. Yao SY, Ng AM, Cass CE, Baldwin SA, Young JD (2011) Nucleobase transport by human equilibrative nucleoside transporter 1 (hENT1). J Biol Chem 286:32552–32562

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

D.T., M.K., A.C.S., and C.E.M. were supported by the Ministry for Innovation, Science, Research and Technology of the State of Northrhine-Westfalia (NRW International Research Graduate School BIOTECH-PHARMA and NRW International Graduate Research School Chemical Biology). We would like to thank Linda Hammerich for skillful support in cloning the mAde1R sequence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anke C. Schiedel.

Additional information

Dominik Thimm and Melanie Knospe contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thimm, D., Knospe, M., Abdelrahman, A. et al. Characterization of new G protein-coupled adenine receptors in mouse and hamster. Purinergic Signalling 9, 415–426 (2013). https://doi.org/10.1007/s11302-013-9360-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-013-9360-9

Keywords

Navigation