Skip to main content
Log in

The rat adenine receptor: pharmacological characterization and mutagenesis studies to investigate its putative ligand binding site

  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

The rat adenine receptor (rAdeR) was the first member of a family of G protein-coupled receptors (GPCRs) activated by adenine and designated as P0-purine receptors. The present study aimed at gaining insights into structural aspects of ligand binding and function of the rAdeR. We exchanged amino acid residues predicted to be involved in ligand binding (Phe1103.24, Asn1153.29, Asn1734.60, Phe17945.39, Asn1945.40, Phe1955.41, Leu2015.47, His2526.54, and Tyr2687.32) for alanine and expressed them in Spodoptera frugiperda (Sf9) insect cells. Membrane preparations subjected to [3H]adenine binding studies revealed only minor effects indicating that none of the exchanged amino acids is part of the ligand binding pocket, at least in the inactive state of the receptor. Furthermore, we coexpressed the rAdeR and its mutants with mammalian Gi proteins in Sf9 insect cells to probe receptor activation. Two amino acid residues, Asn1945.40 and Leu2015.47, were found to be crucial for activation since their alanine mutants did not respond to adenine. Moreover we showed that—in contrast to most other rhodopsin-like GPCRs—the rAdeR does not contain essential disulfide bonds since preincubation with dithiothreitol neither altered adenine binding in Sf9 cell membranes, nor adenine-induced inhibition of adenylate cyclase in 1321N1 astrocytoma cells transfected with the rAdeR. To detect rAdeRs by Western blot analysis, we developed a specific antibody. Finally, we were able to show that the extended N-terminal sequence of the rAdeR constitutes a putative signal peptide of unknown function that is cleaved off in the mature receptor. Our results provide important insights into this new, poorly investigated family of purinergic receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Thimm D, Knospe M, Abdelrahman A, Moutinho M, Alsdorf BBA, von Kügelgen I, Schiedel A, Müller CE (2013) Characterization of new G protein-coupled adenine receptors in mouse and hamster, submitted

  2. Seibt et al. (2013) The second extracellular loop of GPCRs determines subtype-selectivity and controls efficacy as evidenced by loop exchange study at A2 adenosine receptors, submitted

References

  1. Burnstock G (2007) Purine and pyrimidine receptors. Cell Mol Life Sci S 64:1471–1483

    Article  CAS  Google Scholar 

  2. Bender E, Buist A, Jurzak M, Langlois X, Baggerman G, Verhasselt P, Ercken M, Guo HQ, Wintmolders C, Van den Wyngaert I, Van Oers I, Schoofs L, Luyten W (2002) Characterization of an orphan G protein-coupled receptor localized in the dorsal root ganglia reveals adenine as a signaling molecule. Proc Nat Acad Sci USA 99:8573–8578

    Article  PubMed  CAS  Google Scholar 

  3. von Kügelgen I, Schiedel AC, Hoffmann K, Alsdorf BB, Abdelrahman A, Müller CE (2008) Cloning and functional expression of a novel Gi protein-coupled receptor for adenine from mouse brain. Mol Pharmacol 73:469–477

    Article  Google Scholar 

  4. Brunschweiger A, Müller CE (2006) P2 receptors activated by uracil nucleotides—an update. Curr Med Chem 13:289–312

    Article  PubMed  CAS  Google Scholar 

  5. Borrmann T, Abdelrahman A, Volpini R, Lambertucci C, Alksnis E, Gorzalka S, Knospe M, Schiedel AC, Cristalli G, Müller CE (2009) Structure–activity relationships of adenine and deazaadenine derivatives as ligands for adenine receptors, a new purinergic receptor family. J Med Chem 52:5974–5989

    Article  PubMed  CAS  Google Scholar 

  6. Gorzalka S, Vittori S, Volpini R, Cristalli G, von Kügelgen I, Müller CE (2005) Evidence for the functional expression and pharmacological characterization of adenine receptors in native cells and tissues. Mol Pharmacol 67:955–964

    Article  PubMed  CAS  Google Scholar 

  7. Matthews EA, Dickenson AH (2004) Effects of spinally administered adenine on dorsal horn neuronal responses in a rat model of inflammation. Neurosci Lett 356:211–214

    Article  PubMed  CAS  Google Scholar 

  8. Watanabe S, Yoshimi Y, Ikekita M (2003) Neuroprotective effect of adenine on purkinje cell survival in rat cerebellar primary cultures. J Neurosci Res 74:754–759

    Article  PubMed  CAS  Google Scholar 

  9. Watanabe S, Ikekita M, Nakata H (2005) Identification of specific [3H] adenine-binding sites in rat brain membranes. J Biochem 137:323–329

    Article  PubMed  CAS  Google Scholar 

  10. Watanabe A, Sohail MA, Gautam S, Gomes DA, Mehal WZ (2012) Adenine induces differentiation of rat hepatic stellate cells. Dig Dis Sci 57:2371–2378

    Article  PubMed  CAS  Google Scholar 

  11. Kishore BK, Zhang Y, Pop IL, Gevorgyan H, Müller CM, Peti-Peterdi J (2012) Cellular localization of P0 (adenine) receptor in rat kidney. FASEB J 26:688.683

    Google Scholar 

  12. Peti-Peterdi J, Zhang Y, Gevorgyan A, Kohan DE, Müller CM, Kishore BK (2012) Functional expression of P0 (adenine) receptor in the collecting duct of intercalated cells in rat and mouse. J Am Soc Nephrol 23:611A

    Google Scholar 

  13. Wengert M, Adao-Novaes J, Assaife-Lopes N, Leao-Ferreira LR, Caruso-Neves C (2007) Adenine-induced inhibition of Na+-ATPase activity: evidence for involvement of the Gi protein-coupled receptor in the cAMP signaling pathway. Arch Biochem Biophys 467:261–267

    Article  PubMed  CAS  Google Scholar 

  14. Slominska EM, Szolkiewicz M, Smolenski RT, Rutkowski B, Swierczynski J (2002) High plasma adenine concentration in chronic renal failure and its relation to erythrocyte ATP. Nephron 91:286–291

    Article  PubMed  CAS  Google Scholar 

  15. Heo J, Vaidehi N, Wendel J, Goddard WA 3rd (2007) Prediction of the 3-D structure of rat MrgA G protein-coupled receptor and identification of its binding site. J Mol Graph Model 26:800–812

    Article  PubMed  CAS  Google Scholar 

  16. Schiedel AC, Hinz S, Thimm D, Sherbiny F, Borrmann T, Maass A, Müller CE (2011) The four cysteine residues in the second extracellular loop of the human adenosine A2B receptor: role in ligand binding and receptor function. Biochem Pharmacol 82:389–399

    Article  PubMed  CAS  Google Scholar 

  17. Gibson SK, Gilman AG (2006) Giα and Gβ subunits both define selectivity of G protein activation by α2-adrenergic receptors. Proc Natl Acad Sci U S A 103:212–217

    Article  PubMed  CAS  Google Scholar 

  18. Gutman O, Walliser C, Piechulek T, Gierschik P, Henis YI (2010) Differential regulation of phospholipase C-β2 activity and membrane interaction by Gαq, Gβ1γ2, and Rac2. J Biol Chem 285:3905–3915

    Article  PubMed  CAS  Google Scholar 

  19. Schneider EH, Schnell D, Papa D, Seifert R (2009) High constitutive activity and a G-protein-independent high-affinity state of the human histamine H4-receptor. Biochemistry 48:1424–1438

    Article  PubMed  CAS  Google Scholar 

  20. Gorzalka S (2006) Neuartige G-Protein-gekoppelte Purinrezeptoren: Funktionelle Charakterisierung nativer Adeninrezeptoren und Evaluation neuer Purinrezeptor-Liganden. Dissertation, University of Bonn, Germany

  21. Seifert R, Lee TW, Lam VT, Kobilka BK (1998) Reconstitution of β2-adrenoceptor-GTP-binding-protein interaction in Sf9 cells—high coupling efficiency in a β2-adrenoceptor–G fusion protein. Eur J Biochem 255:369–382

    Article  PubMed  CAS  Google Scholar 

  22. Nordstedt C, Fredholm BB (1990) A modification of a protein-binding method for rapid quantification of cAMP in cell-culture supernatants and body fluid. Anal Biochem 189:231–234

    Article  PubMed  CAS  Google Scholar 

  23. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  24. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  25. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC (2007) High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science 318:1258–1265

    Article  PubMed  CAS  Google Scholar 

  26. Berger F, Sichardt K, Borrmann T, Müller CE, Nieber K (2010) Functional characterisation of adenine and the new adenine receptor ligands PSB-09073 and PSB-08162 in the rat cingulate cortex. Purinergic Signal 4(Suppl 5):S44

    Google Scholar 

  27. Sichardt K, Nieber K (2008) Function of adenine receptors and interactions with adenosine A1 receptors in the rat cingulate cortex. Purinergic Signal 4(Suppl 1):1–210

    Google Scholar 

  28. Ballesteros J, Weinstein H (1995) Integrated methods for the constructionof threedimensional models of structure–function relations in G protein-coupled receptors. Meth Neurosci 25:366–428

    Article  CAS  Google Scholar 

  29. Jacobson KA, Costanzi S (2012) New insights for drug design from the X-ray crystallographic structures of G-protein-coupled receptors. Mol Pharmacol 82:361–371

    Article  PubMed  CAS  Google Scholar 

  30. Granier S, Kobilka B (2012) A new era of GPCR structural and chemical biology. Nat Chem Biol 8:670–673

    Article  PubMed  CAS  Google Scholar 

  31. Katritch V, Cherezov V, Stevens RC (2013) Structure–function of the G protein-coupled receptor superfamily. Annu Rev Pharmacol Toxicol 53:531–556. doi:10.1146/annurev-pharmtox-032112-135923

    Article  PubMed  CAS  Google Scholar 

  32. Mobarec JC, Sanchez R, Filizola M (2009) Modern homology modeling of G-protein coupled receptors: which structural template to use? J Med Chem 52:5207–5216

    Article  PubMed  CAS  Google Scholar 

  33. Salon JA, Lodowski DT, Palczewski K (2011) The significance of G protein-coupled receptor crystallography for drug discovery. Pharmacol Rev 63:901–937

    Article  PubMed  CAS  Google Scholar 

  34. Lebon G, Warne T, Tate CG (2012) Agonist-bound structures of G protein-coupled receptors. Curr Opin Struct Biol 22:1–9

    Article  Google Scholar 

  35. Schertler GF, Hargrave PA (1995) Projection structure of frog rhodopsin in two crystal forms. Proc Nat Acad Sci USA 92:11578–11582

    Article  PubMed  CAS  Google Scholar 

  36. Unger VM, Hargrave PA, Baldwin JM, Schertler GF (1997) Arrangement of rhodopsin transmembrane α-helices. Nature 389:203–206

    Article  PubMed  CAS  Google Scholar 

  37. Cöster M, Wittkopf D, Kreuchwig A, Kleinau G, Thor D, Krause G, Schöneberg T (2012) Using ortholog sequence data to predict the functional relevance of mutations in G-protein-coupled receptors. FASEB J 26:3273–3281

    Article  PubMed  Google Scholar 

  38. Schiedel AC, Meyer H, Alsdorf BB, Gorzalka S, Brüssel H, Müller CE (2007) [3H] Adenine is a suitable radioligand for the labeling of G protein-coupled adenine receptors but shows high affinity to bacterial contaminations in buffer solutions. Purinergic Signal 3:347–358

    Article  PubMed  CAS  Google Scholar 

  39. Schneider EH, Seifert R (2010) Sf9 cells: a versatile model system to investigate the pharmacological properties of G protein-coupled receptors. Pharmacol Ther 128:387–418

    Article  PubMed  CAS  Google Scholar 

  40. Müller CE, Schiedel AC, Baqi Y (2012) Allosteric modulators of rhodopsin-like G protein-coupled receptors: opportunities in drug development. Pharmacol Ther 135:292–315

    Article  PubMed  Google Scholar 

  41. Katritch V, Rueda M, Lam PC, Yeager M, Abagyan R (2010) GPCR 3D homology models for ligand screening: lessons learned from blind predictions of adenosine A2A receptor complex. Proteins 78:197–211

    Article  PubMed  CAS  Google Scholar 

  42. Lacher SK, Mayer R, Sichardt K, Nieber K, Müller CE (2007) Interaction of valerian extracts of different polarity with adenosine receptors: identification of isovaltrate as an inverse agonist at A1 receptors. Biochem Pharmacol 73:248–258

    Article  PubMed  CAS  Google Scholar 

  43. Schumacher B, Scholle S, Hölzl J, Khudeir N, Hess S, Müller CE (2002) Lignans isolated from valerian: identification and characterization of a new olivil derivative with partial agonistic activity at A1 adenosine receptors. J Nat Prod 65:1479–1485

    Article  PubMed  CAS  Google Scholar 

  44. Klaasse E, de Ligt RA, Roerink SF, Lorenzen A, Milligan G, Leurs R, IJzerman AP (2004) Allosteric modulation and constitutive activity of fusion proteins between the adenosine A1 receptor and different 351Cys-mutated Giα subunits. Eur J Pharmacol 499:91–98

    Article  PubMed  CAS  Google Scholar 

  45. Xu F, Wu H, Katritch V, Han GW, Jacobson KA, Gao ZG, Cherezov V, Stevens RC (2011) Structure of an agonist-bound human A2A adenosine receptor. Science 332:322–327

    Article  PubMed  CAS  Google Scholar 

  46. Rasmussen SG, DeVree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS, Thian FS, Chae PS, Pardon E, Calinski D, Mathiesen JM, Shah ST, Lyons JA, Caffrey M, Gellman SH, Steyaert J, Skiniotis G, Weis WI, Sunahara RK, Kobilka BK (2011) Crystal structure of the β2 adrenergic receptor–Gs protein complex. Nature 477:549–555

    Article  PubMed  CAS  Google Scholar 

  47. Rasmussen SG, Choi HJ, Fung JJ, Pardon E, Casarosa P, Chae PS, Devree BT, Rosenbaum DM, Thian FS, Kobilka TS, Schnapp A, Konetzki I, Sunahara RK, Gellman SH, Pautsch A, Steyaert J, Weis WI, Kobilka BK (2011) Structure of a nanobody-stabilized active state of the β2 adrenoceptor. Nature 469:175–180

    Article  PubMed  CAS  Google Scholar 

  48. Hillmann P, Ko GY, Spinrath A, Raulf A, von Kügelgen I, Wolff SC, Nicholas RA, Kostenis E, Holtje HD, Müller CE (2009) Key determinants of nucleotide-activated G protein-coupled P2Y2 receptor function revealed by chemical and pharmacological experiments, mutagenesis and homology modeling. J Med Chem 52:2762–2775

    Article  PubMed  CAS  Google Scholar 

  49. Matherne GP, Linden J, Byford AM, Gauthier NS, Headrick JP (1997) Transgenic A1 adenosine receptor overexpression increases myocardial resistance to ischemia. Proc Natl Acad Sci U S A 94:6541–6546

    Article  PubMed  CAS  Google Scholar 

  50. de Graaf C, Foata N, Engkvist O, Rognan D (2008) Molecular modeling of the second extracellular loop of G-protein coupled receptors and its implication on structure-based virtual screening. Proteins 71:599–620

    Article  PubMed  Google Scholar 

  51. Katritch V, Cherezov V, Stevens RC (2012) Diversity and modularity of G protein-coupled receptor structures. Trends Pharmacol Sci 33:17–27

    Article  PubMed  CAS  Google Scholar 

  52. Scholl DJ, Wells JN (2000) Serine and alanine mutagenesis of the nine native cysteine residues of the human A1 adenosine receptor. Biochem Pharmacol 60:1647–1654

    Article  PubMed  CAS  Google Scholar 

  53. Schülein R, Westendorf C, Krause G, Rosenthal W (2012) Functional significance of cleavable signal peptides of G protein-coupled receptors. Eur J Cell Biol 91:294–299

    Article  PubMed  Google Scholar 

  54. Wallin E, von Heijne G (1995) Properties of N-terminal tails in G-protein coupled receptors: a statistical study. Protein Eng 8:693–698

    Article  PubMed  CAS  Google Scholar 

  55. Köchl R, Alken M, Rutz C, Krause G, Oksche A, Rosenthal W, Schülein R (2002) The signal peptide of the G protein-coupled human endothelin B receptor is necessary for translocation of the N-terminal tail across the endoplasmic reticulum membrane. J Biol Chem 277:16131–16138

    Article  PubMed  Google Scholar 

  56. Alken M, Rutz C, Kochl R, Donalies U, Oueslati M, Furkert J, Wietfeld D, Hermosilla R, Scholz A, Beyermann M, Rosenthal W, Schulein R (2005) The signal peptide of the rat corticotropin-releasing factor receptor 1 promotes receptor expression but is not essential for establishing a functional receptor. Biochem J 390:455–464

    Article  PubMed  CAS  Google Scholar 

  57. Michino M, Abola E, GPCR Dock 2008 participants, Brooks CL III, Dixon JS, Moult J, Stevens RC (2009) Community-wide assessment of GPCR structure modelling and ligand docking: GPCR Dock 2008. Nat Rev Drug Discov 8:455–463

    Google Scholar 

Download references

Acknowledgments

A.C.S., C.E.M, D.T., and M.K. were supported by the state of NRW (NRW International Graduate Research Schools Chemical Biology and BIOTECH-PHARMA). We would like to thank Prof. Dr. Alfred G. Gilman (University of Texas Medical Center, Dallas, TX, USA) for providing Gαi2 baculoviruses and Prof. Dr. Peter Gierschik (Institute of Pharmacology, University of Ulm) for Gβ1γ2 baculoviruses. We are particularly grateful to Prof. Dr. Roland Seifert (Medizinische Hochschule Hannover) for valuable advice regarding the GTPγS experiments and for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christa E. Müller or Anke C. Schiedel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig. 1

[3H]Adenine binding (10 nM) to membrane preparations of rat cortical membranes (100 μg protein) in the presence of different DMSO concentrations. Data represent means ± SEM of three independent experiments performed in triplicates or in duplicates. Results of one-way ANOVA: non-significantly different p = 0.673 (JPEG 35 kb)

High resolution image

(TIFF 6027 kb)

Supplemental Fig. 2

Multiple sequence alignment of 26 human and rodent Mrg receptors, including Mas and all known adenine receptors, generated using Clustal W. (*) identical amino acid residues; (:) conserved amino acid substitution; (.) semi-conserved amino acid substitution. Amino acid residues are given in the one-letter code (DOCX 29 kb)

Supplemental Fig. 3

Results from homologous competition binding of adenine to wt and mutant rat AdeRs expressed in Sf9 cells vs [3H]adenine (10 nM). Presented pIC50 values are means ± SEM from 3–7 independent experiments performed in triplicates (also see Table 1). The level of significance was determined by an unpaired t-test, ns: non-significant; p > 0.05; * p < 0.05; ***p < 0.001 (JPEG 26 kb)

High resolution image

(TIFF 4385 kb)

Supplemental Fig. 4

[35S]GTPγS binding studies at wt and mutant rat adenine receptors coexpressed with mammalian G proteins. Adenine-induced effects on [35S]GTPγS binding at the wt rat adenine receptor and its mutants F110A, N115A, N173A, F179A, F195A, H252A, and Y268A. The radioligand [35S]GTPγS was used at a concentration of 0.5 nM. The results shown represent means ± SEM from 3–5 independent experiments performed in triplicates. EC50 and Emax values are listed in Table 2 (JPEG 23 kb)

High resolution image

(TIFF 4153 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knospe, M., Müller, C.E., Rosa, P. et al. The rat adenine receptor: pharmacological characterization and mutagenesis studies to investigate its putative ligand binding site. Purinergic Signalling 9, 367–381 (2013). https://doi.org/10.1007/s11302-013-9355-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-013-9355-6

Keywords

Navigation