Skip to main content
Log in

NTPDase1 activity attenuates microglial phagocytosis

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Purinergic signaling plays a major role in the regulation of phagocytosis in microglia. Interplay between P2 and P1 receptor activation is controlled by a cascade of extracellular enzymes which dephosphorylate purines resulting in the formation of adenosine. The ATP- and ADP-degrading capacity of cultured microglia depends on the expression of ecto-nucleoside triphosphate diphosphohydrolase 1 (CD39) and is several times higher when compared to astrocytes which lack this enzyme. In brain slices, deletion of CD39 resulted in a 50 % decrease of ADP-degrading ability, while the degradation of ATP was decreased to about 75 % of the values measured in wild-type brain tissue. Microglia in acute slices from cd39−/− animals had increased constitutive phagocytic activity which could not be further enhanced by ATP in contrast to control animals. Pharmacological blockage of P2 receptors decreased the constitutive phagocytic activity to a similar base level in wild-type and cd39−/− microglia. Activation of P1 receptors by non-hydrolysable adenosine analog significantly decreased phagocytic activity. Deletion of CD73, an enzyme expressed by microglia which converts AMP to adenosine did not affect phagocytic activity. Taken together, these data show that CD39 plays a prominent role in controlling ATP levels and thereby microglial phagocytosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

E-NTPDase:

Ecto-nucleoside triphosphate diphosphohydrolase

ACSF:

Artificial cerebrospinal fluid

PPADS:

Pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid tetrasodium salt

NECA:

1-(6-Amino-9H-purin-9-yl)-1-deoxy-N-ethyl-β-D-ribofuranuronamide

References

  1. Neumann H, Kotter MR, Franklin RJM (2009) Debris clearance by microglia: an essential link between degeneration and regeneration. Brain J Neurol 132:288–295

    Article  CAS  Google Scholar 

  2. Koizumi S, Shigemoto-Mogami Y, Nasu-Tada K, Shinozaki Y, Ohsawa K, Tsuda M, Joshi BV, Jacobson KA, Kohsaka S, Inoue K (2007) UDP acting at P2Y6 receptors is a mediator of microglial phagocytosis. Nature 446:1091–1095

    Article  PubMed  CAS  Google Scholar 

  3. Fang K-M, Yang C-S, Sun SH, Tzeng S-F (2009) Microglial phagocytosis attenuated by short-term exposure to exogenous ATP through P2X receptor action. J Neurochem 111:1225–1237

    Article  PubMed  CAS  Google Scholar 

  4. Belikoff BG, Hatfield S, Georgiev P, Ohta A, Lukashev D, Ja B, Remick DG, Sitkovsky M (2011) A2B adenosine receptor blockade enhances macrophage-mediated bacterial phagocytosis and improves polymicrobial sepsis survival in mice. J Immunol 186:2444–2453

    Article  PubMed  CAS  Google Scholar 

  5. Haskó G, Pacher P, Deitch EA, Vizi ES (2007) Shaping of monocyte and macrophage function by adenosine receptors. Pharmacol Ther 113:264–275

    Article  PubMed  Google Scholar 

  6. Dale N, Frenguelli BG (2009) Release of adenosine and ATP during ischemia and epilepsy. Curr Neuropharmacol 7:160–179

    Article  PubMed  CAS  Google Scholar 

  7. Charles AC, Merrill JE, Dirksen ER, Sanderson MJ (1991) Intercellular signaling in glial cells: calcium waves and oscillations in response to mechanical stimulation and glutamate. Neuron 6:983–992

    Article  PubMed  CAS  Google Scholar 

  8. Braun N, Sévigny J, Robson SC, Enjyoji K, Guckelberger O, Hammer K, Di Virgilio F, Zimmermann H (2000) Assignment of ecto-nucleoside triphosphate diphosphohydrolase-1/cd39 expression to microglia and vasculature of the brain. Eur J Neurosci 12:4357–4366

    PubMed  CAS  Google Scholar 

  9. Kukulski F, Komoszyński M (2003) Purification and characterization of NTPDase1 (ecto-apyrase) and NTPDase2 (ecto-ATPase) from porcine brain cortex synaptosomes. Eur J Biochem FEBS 270:3447–3454

    Article  CAS  Google Scholar 

  10. Kukulski F, Lévesque SA, Sévigny J (2011) Impact of ectoenzymes on p2 and p1 receptor signaling. Adv Pharmacol 61:263–299

    Article  PubMed  CAS  Google Scholar 

  11. Robson SC, Sévigny J, Zimmermann H (2006) The E-NTPDase family of ectonucleotidases: structure function relationships and pathophysiological significance. Purinergic Signalling 2:409–430

    Article  PubMed  CAS  Google Scholar 

  12. Zimmermann H (2006) Ectonucleotidases in the nervous system. Novartis Foundation symposium 276:113–128

  13. Ja T, Jarvis SM (1996) Adenosine transporters. Gen Pharmacol 27:613–620

    Article  Google Scholar 

  14. Prinz M, Kann O, Draheim HJ, Schumann RR, Kettenmann H, Weber JR, Hanisch UK (1999) Microglial activation by components of gram-positive and -negative bacteria: distinct and common routes to the induction of ion channels and cytokines. J Neuropathol Exp Neurol 58:1078–1089

    Article  PubMed  CAS  Google Scholar 

  15. Enjyoji K, Sévigny J, Lin Y, Frenette PS, Christie PD, Esch JS, Imai M, Edelberg JM, Rayburn H, Lech M, Beeler DL, Csizmadia E, Wagner DD, Robson SC, Rosenberg RD (1999) Targeted disruption of cd39/ATP diphosphohydrolase results in disordered hemostasis and thromboregulation. Nat Med 5:1010–1017

    Article  PubMed  CAS  Google Scholar 

  16. Castrop H, Huang Y, Hashimoto S, Mizel D, Hansen P, Theilig F, Bachmann S, Deng C, Briggs J, Schnermann J (2004) Impairment of tubuloglomerular feedback regulation of GFR in ecto-5′-nucleotidase/CD73-deficient mice. J Clin Investig 114:634–642

    PubMed  CAS  Google Scholar 

  17. Schipke CG, Haas B, Kettenmann H (2008) Astrocytes discriminate and selectively respond to the activity of a subpopulation of neurons within the barrel cortex. Cereb Cortex 18:2450–2459

    Article  PubMed  Google Scholar 

  18. Geladopoulos TP, Sotiroudis TG, Evangelopoulos AE (1991) A malachite green colorimetric assay for protein phosphatase activity. Anal Biochem 192:112–116

    Article  PubMed  CAS  Google Scholar 

  19. Rasband WS (1997–2011) Image J. U. S. National Institutes of Health. http://imagej.nih.gov/ij/

  20. Saura J (2007) Microglial cells in astroglial cultures: a cautionary note. J Neuroinflammation 4:26

    Article  PubMed  Google Scholar 

  21. Markovic DS, Glass R, Synowitz M, Rooijen N, Kettenmann H (2005) Microglia stimulate the invasiveness of glioma cells by increasing the activity of metalloprotease-2. J Neuropathol Exp Neurol 64:754–762

    Article  PubMed  CAS  Google Scholar 

  22. Murabe Y, Sano Y (1982) Morphological studies on neuroglia. VI. Postnatal development of microglial cells. Cell Tissue Res 225:469–485

    Article  PubMed  CAS  Google Scholar 

  23. Smith ME (2001) Phagocytic properties of microglia in vitro: implications for a role in multiple sclerosis and EAE. Microsc Res Tech 54:81–94

    Article  PubMed  CAS  Google Scholar 

  24. Hughes MM, Field RH, Perry VH, Murray CL, Cunningham C (2010) Microglia in the degenerating brain are capable of phagocytosis of beads and of apoptotic cells, but do not efficiently remove PrPSc, even upon LPS stimulation. Glia 58:2017–2030

    Article  PubMed  Google Scholar 

  25. Färber K, Markworth S, Pannasch U, Nolte C, Prinz V, Kronenberg G, Gertz K, Endres M, Bechmann I, Enjyoji K, Robson SC, Kettenmann H (2008) The ectonucleotidase cd39/ENTPDase1 modulates purinergic-mediated microglial migration. Glia 56:331–341

    Article  PubMed  Google Scholar 

  26. Parkinson FE, Damaraju VL, Graham K, Yao SYM, Baldwin SA, Cass CE, Young JD (2011) Molecular biology of nucleoside transporters and their distributions and functions in the brain. Curr Top Med Chem 11:948–972

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Deutsche Forschungsgemeinschaft. We thank Regina Piske, Irene Haupt, and the staff of microscopy core facility at the Max Delbrueck Center for Molecular Medicine for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Kettenmann.

Additional information

Vitali Matyash and Helmut Kettenmann contributed equally to this paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 34 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bulavina, L., Szulzewsky, F., Rocha, A. et al. NTPDase1 activity attenuates microglial phagocytosis. Purinergic Signalling 9, 199–205 (2013). https://doi.org/10.1007/s11302-012-9339-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-012-9339-y

Keywords

Navigation