Skip to main content

Advertisement

Log in

Purinergic system ecto-enzymes participate in the thromboregulation of patients with indeterminate form of Chagas disease

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Chagas disease (CD) is a chronic and endemic illness caused by the parasite Trypanosoma cruzi. Microvascular disturbances play an important role in the progress of the disease. The purinergic signaling system participates in regulatory functions, such as immunomodulation, neuroprotection, and thromboregulation. This study aimed to investigate the activities of purinergic system ecto-enzymes present on the platelet surface and the platelet aggregation profile from patients with indeterminate form of Chagas disease (IFCD). Thirty patients diagnosed with IFCD and 30 healthy subjects were selected. Ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase), ecto-nucleotide pyrophosphatase/phosphodiesterase (E-NPP), ecto-5′-nucleotidase (E-5′-NT) and ecto-adenosine deaminase (E-ADA) activities were measured in platelets isolated from these individuals as well as the platelet aggregation. Results demonstrated an increase of 21 % in the E-NPP activity and 30 % in the E-5′-NT activity in IFCD group (P < 0.05); however, a decrease of 34 % in the E-ADA activity was determined in the same group (P < 0.001). A significant decrease of 12.7 % and 12.8 % in the platelet aggregation of IFCD group in two different concentrations of ADP (5 and 10 μM) was observed, respectively (P < 0.05). Increased E-NPP and E-5-NT activities as well as decreased E-ADA activity in platelets of patients with IFCD contributed to decrease platelet aggregation, suggesting that the purinergic system is involved in the thromboregulation process in these patients, since adenosine (the final product of ATP hydrolysis) has cardioprotective and vasodilator effects that prevent the clinical progress of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rossi MA, Bestetti RB (1995) Hipótese unificada sobre a patogênese da cardiopatia chagásica crônica. Implicações terapêuticas. Arq Bras Cardiol 64:255–260

    PubMed  CAS  Google Scholar 

  2. Prata A (2001) Clinical and epidemiological aspects of Chagas' disease. Lancet Infect Dis 1:92–100

    Article  PubMed  CAS  Google Scholar 

  3. Prata A (1959) Prognóstico e complicações da doença de Chagas. Rev Goiana Med 5:87–96

    Google Scholar 

  4. Gonçalves JG, Dias Silva VJ, Calzada Borges MC, Prata A, Correia D (2010) Mortality indicators among chronic Chagas patients living in an endemic area. Int J Cardiol 143:235–242

    Article  PubMed  Google Scholar 

  5. Rossi MA (1990) Microvascular changes as a cause of chronic cardiomyopathy in Chagas' disease. Am Heart J 120:233–236

    Article  PubMed  CAS  Google Scholar 

  6. Prata A (1994) Chagas' disease. Infect Dis Clin North Am 8:61–76

    PubMed  CAS  Google Scholar 

  7. Jr Rassi A, Rassi A, Little WC, Xavier SS, Rassi SG, Rassi AG, Rassi GG, Hasslocher-Moreno A, Sousa AS, Scanavacca MI (2006) Development and validation of a risk score for predicting death in Chagas' heart disease. N Engl J Med 355:799–808

    Article  PubMed  CAS  Google Scholar 

  8. Marcus AJ, Broekman MJ, Drosopoulos JH, Pinsky DJ, Islam N, Maliszewsk CR (2001) Inhibition of platelet recruitment by endothelial cell CD39/ecto-ADPase: significance for occlusive vascular disease. Ital Heart J 2:824–830

    PubMed  CAS  Google Scholar 

  9. Birk AV, Broekman MJ, Gladek EM, Robertson HD, Drosopoulos JH, Marcus AJ, Szeto HH (2002) Role of extracellular ATP metabolism in regulation of platelet reactivity. J Lab Clin Med 140:166–175

    Article  PubMed  CAS  Google Scholar 

  10. Ralevic V, Burnstock G (2003) Involvement of purinergic signaling in cardiovascular diseases. Drug News Perspect 16:133–140

    Article  PubMed  CAS  Google Scholar 

  11. Atkinson B, Dwyer K, Enjyoji K, Robson SC (2006) Ecto-nucleotidases of the cd-39/ntpdase family modulated platelet activation on thrombous formation: potential as therapeutic targets. Blood Cells Mol Dis 36:217–222

    Article  PubMed  CAS  Google Scholar 

  12. Clifford EE, Parker K, Humphreys BD, Kertesy SB, Dubyak GR (1998) The P2X1 receptor, an adenosine triphosphate-gated cation channel, is expressed in human platelets but not in human blood leukocytes. Blood 91:3172–3181

    PubMed  CAS  Google Scholar 

  13. Léon C, Hechler B, Vial C, Leray C, Cazenave JP, Gachet C (1997) The P2Y1 receptor is an ADP receptor antagonized by ATP and expressed in platelets and megakaryoblastic cells. FEBS Lett 403:26–30

    Article  PubMed  Google Scholar 

  14. Hollopeter G, Jantzen HM, Vincent D, Li G, England L, Ramakrishnan V, Yang RB, Nurden P, Nurden A, Julius D et al (2001) Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature (Lond) 409:202–207

    Article  CAS  Google Scholar 

  15. Zimmermann H (2000) Extracellular metabolism of ATP and other nucleotides. Naunyn Schmiedeberg Arch Pharmacol 362:299–309

    Article  CAS  Google Scholar 

  16. Yang D, Chen H, Koupenova M, Carroll SH, Eliades A, Freedman JE, Toselli P, Ravid K (2010) A new role for the A2b adenosine receptor in regulating platelet function. J Thromb Haemost 8:817–827

    Article  PubMed  Google Scholar 

  17. Johnston-Cox HA, Yang D, Ravid K (2011) Physiological implications of adenosine receptor-mediated platelet aggregation. J Cell Physiol 226:46–51

    Article  PubMed  CAS  Google Scholar 

  18. Pilla C, Emanuelli T, Frassetto SS, Battastini AMO, Dias RD, Sarkis JJF (1996) ATP diphosphohydrolase activity (Apyrase, EC 3.6.1.5.) in human blood platelets. Platelets 7:225–230

    Article  PubMed  CAS  Google Scholar 

  19. Lunkes IG, Lunkes D, Stefanello F, Morch A, Morch MV, Mazzantti MC, Schetinger MCR (2003) Enzymes that hydrolyze adenine nucleotides in diabetes and associated pathologies. Thromb Res 109:189–194

    Article  PubMed  CAS  Google Scholar 

  20. Spanevello RM, Mazzanti CM, Bagatini M, Correa M, Schmatz R, Stefanello N, Thomé G, Morsch VM, Becker L, Bellé L, de Oliveira L, Schetinger MR (2010) Activities of the enzymes that hydrolyze adenine nucleotides in platelets from multiple sclerosis patients. J Neurol 257:24–30

    Article  PubMed  CAS  Google Scholar 

  21. Becker LV, Rosa CS, Souza VCG, Bagatini MD, Casali EA, Leal CA, da Silva JC, Moretto MB, de Pinheiro FV, Morsch VM, Schetinger MR, Leal DB (2010) Activities of enzymes that hydrolyze adenine nucleotides in platelets from patients with rheumatoid arthritis. Clin Biochem 43:1096–1100

    Article  PubMed  CAS  Google Scholar 

  22. Maldonado PA, Corrêa MC, Becker LV, Flores C, Moretto MB, Morsch V, Schetinger MRC (2008) Ectonucleotide pyrophosphatase/phosphodiesterase (E-NPP) and adenosine deaminase (ADA) activities in patients with uterine cervix neoplasia. Clin Biochem 41:400–406

    Article  CAS  Google Scholar 

  23. Bagatini MD, Martins CC, Battisti V, Spanevello RM, Gasparetto D, Rosa CS, Gonçalves JF, Schetinger MR, dos Santos RB, Morsch VM (2008) Hydrolysis of adenine nucleotides in platelets from patients with acute myocardial infarction. Clin Biochem 41:1181–1185

    Article  PubMed  CAS  Google Scholar 

  24. Leal CA, Schetinger MR, Leal DB, Bauchspiess K, Schrekker CM, Maldonado PA, Morsch VM, da Silva JE (2007) NTPDase and 5′-nucleotidase activities in platelets of human pregnants with a normal or high risk for thrombosis. Mol Cell Biochem 304:325–330

    Article  PubMed  CAS  Google Scholar 

  25. Anonymous (1985) Meeting of applied research in Chagas disease. Validity of the concept of indeterminate form. Rev Soc Bras Med Trop 18:46

    Google Scholar 

  26. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of proteins-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  27. Chan KM, Delfert D, Junger KD (1986) A direct colorimetric assay for Ca2+-stimulated ATPase activity. Anal Biochem 157:375–380

    Article  PubMed  CAS  Google Scholar 

  28. Fürsternau C, da Trentin DS, Barreto-Chaves ML, Sarkis JJ (2006) Ecto-nucleotide pyrophosphatase/phosphodiesterase as part of a multiple system for nucleotide hydrolysis by platelets from rats: kinetic characterization and biochemical properties. Platelets 17:84–91

    Article  Google Scholar 

  29. Sakura H, Nagashima S, Nakashima A, Maeda M (1998) Characterization of fetal serum 5′-nucleotide phosphodiesterase: a novel function as a platelet aggregation inhibitor in fetal circulation. Thromb Res 91:83–89

    Article  PubMed  CAS  Google Scholar 

  30. Frassetto SS, Dias RD, Sarkis JJ (1993) Characterization of an ATP diphosphohydrolase activity (APYRASE, EC 3.6.1.5) in rat blood platelets. Mol Cell Biochem 129:47–55

    Article  PubMed  CAS  Google Scholar 

  31. Giusti G, Galanti B (1984) Colorimetric Method. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Verlag Chemie, Weinheim, pp 315–323

    Google Scholar 

  32. Born GVR, Cross MJ (1963) The aggregation of blood platelets. J Physiol 95:168–178

    Google Scholar 

  33. Añez N, Carrasco H, Parada H, Crisante G, Rojas A, Fuenmayor C, Gonzalez N, Percoco G, Borges R, Guevara P, Ramirez JL (1999) Myocardial parasite persistence in chronic Chagasic patients. AmJTrop Med Hyg 60:726–732

    Google Scholar 

  34. Lopes ER, Chapadeiro E, Andrade ZA, Almeida H, Rocha A (1981) Pathological anatomy of hearts from asymptomatic Chagas disease patients dying in a violent manner. Mem Inst Oswald Cruz 76:189–197

    Article  CAS  Google Scholar 

  35. Lopes ER, Rocha A, Adad SJ, Fernandes EL, Chapadeiro E (1988) Necroscopic study of a case of chronic form of Chagas disease with electrocardiogram and x-rays of normal thorax. Special reference to the excito-conductor system of the heart. Rev Soc Bras Med Trop 21:67–70

    PubMed  CAS  Google Scholar 

  36. Cardoso JE, Brener Z (1980) Hematological changes in mice experimentally infected with Trypanosoma cruzi. Mem Inst Oswald Cruz 75:97–104

    Article  CAS  Google Scholar 

  37. Jamra MA, De Freitas JL, Amato Neto V, Da Silva LH, Tartari JT (1954) Hematological aspects of the initial phases of Chagas' disease. Rev Paul Med 45:544–552

    PubMed  CAS  Google Scholar 

  38. Rossi MA, Gonçalves S, Ribeiro-dos-Santos R (1984) Experimental Trypanosoma cruzi cardiomyopathy in BALB/c mice. The potential role of intravascular platelet aggregation in its genesis. Am J Pathol 114:209–216

    PubMed  CAS  Google Scholar 

  39. Tanowitz HB, Burns ER, Sinha AK, Kahn NN, Morris SA, Factor SM, Hatcher VB, Bilezikian JP, Baum SG, Wittner M (1990) Enhanced platelet adherence and aggregation in Chagas' disease: a potential pathogenic mechanism for cardiomyopathy. AmJTrop Med Hyg 43:274–281

    CAS  Google Scholar 

  40. Gordon EL, Pearson JD, Dickinson ES, Moreau D, Slakey LL (1989) The hydrolysis of extracellular adenine nucleotides by arterial smooth muscle cells. Regulation of adenosine production at the cell surface. J Biol Chem 264:18986–18995

    PubMed  CAS  Google Scholar 

  41. Kauffenstein G, Drouin A, Thorin-Trescases N, Bachelard H, Robaye B, D'Orléans-Juste P, Marceau F, Thorin E, Sévigny J (2010) NTPDase1 (CD39) controls nucleotide-dependent vasoconstriction in mouse. Cardiovasc Res 85:204–213

    Article  PubMed  CAS  Google Scholar 

  42. Heine P, Braun N, Heilbronn A, Zimmermann H (1999) Functional characterization of rat ecto-ATPase and ecto-ATP diphosphohydrolase after heterologous expression in CHO cells. Eur J Biochem 262:102–107

    Article  PubMed  CAS  Google Scholar 

  43. Soslau G, Youngprapakorn D (1997) A possible dual physiological role of extracellular ATP in the modulation of platelet aggregation. Biochim Biophys Acta 1355:131–140

    Article  PubMed  CAS  Google Scholar 

  44. Park HS, Hourani SM (1999) Differential effects of adenine nucleotide analogues on shape change and aggregation induced by adenosine 5-diphosphate (ADP) in human platelet. Br J Pharmacol 127:1359–1366

    Article  PubMed  CAS  Google Scholar 

  45. Borowiec A, Lechward K, Tkacz-Stachowska K, Skladanowski AC (2006) Adenosine as a metabolic regulator of tissue function: production of adenosine by cytoplasmic 5′-nucleotidases. Acta Biochim Pol 53:269–278

    PubMed  CAS  Google Scholar 

  46. Fretes RE, Paglini P, Fernández AR, Enders J, de Fabro SP (1999) Trypanosoma cruzi: increased 5′-nucleotidase activity associated with dysfunction of adrenergic receptors in acutely infected albino Swiss mice. J Parasitol 85:970–972

    Article  PubMed  CAS  Google Scholar 

  47. Zhai X, Zhou X, Ashraf M (1995) Interaction of singlet oxygen with 5′-nucleotidase in rat hearts. J Mol Cell Cardiol 27:2453–2464

    Article  PubMed  CAS  Google Scholar 

  48. Headrick JP, Emerson CS, Berr SS, Berne RM, Matherne GP (1996) Interstitial adenosine and cellular metabolism during beta-adrenergic stimulation of the in situ rabbit heart. Cardiovasc Res 31:699–710

    PubMed  CAS  Google Scholar 

  49. Da Silva AS, Pimentel VC, Fiorenza AM, França RT, Tonin AA, Jaques JA, Leal CA, Da Silva CB, Morsch V, Sschetinger MR, Lopes ST, Monteiro SG (2011) Activity of cholinesterases and adenosine deaminase in blood and serum of rats experimentally infected with Trypanosoma cruzi. Ann Trop Med Parasitol 105:385–391

    Article  PubMed  Google Scholar 

  50. Tanowitz HB, Kirchhoff LV, Simon D, Morris SA, Weiss LM, Wittner M (1992) Chagas' disease. Clin Microbiol Rev 5:400–419

    PubMed  CAS  Google Scholar 

  51. Paul S, Feoktistov I, Hollister AS, Robertson D, Biaggioni I (1990) Adenosine inhibits the rise in intracellular calcium and platelet aggregation produced by thrombin: evidence that both effects are coupled to adenylate cyclase. Mol Pharmacol 37:870–875

    PubMed  CAS  Google Scholar 

  52. Linden MD, Barnard MR, Frelinger AL, Michelson AD, Przyklenk K (2008) Effect of adenosine A2 receptor stimulation on platelet activation-aggregation: differences between canine and human models. Thromb Res 121:689–698

    Article  PubMed  CAS  Google Scholar 

  53. Sim DS, Merrill-Skoloff G, Furie BC, Furie B, Flaumenhaft R (2004) Initial accumulation of platelets during arterial thrombus formation in vivo is inhibited by elevation of basal cAMP levels. Blood 103:2127–2134

    Article  PubMed  CAS  Google Scholar 

  54. Minamino T, Kitakaze M, Morioka T, Node K, Komamura K, Takeda H, Inoue M, Hori M, Kamada T (1996) Cardioprotection due to preconditioning correlates with increased ecto-5′-nucleotidase activity. Am J Physiol 270:H238–H244

    PubMed  CAS  Google Scholar 

  55. Kitakaze M, Minamino T, Node K, Komamura K, Hori M (1996) Activation of ecto-5′-nucleotidase and cardioprotection by ischemic preconditioning. Basic Res Cardiol 91(1):23–26

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Fundo de Incentivo a Pesquisa (FIPE/UFSM), Brazil.

Disclosure of conflicts of interests

Author declares there are no actual or potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela B. R. Leal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Souza, V.d.C.G., Schlemmer, K.B., Noal, C.B. et al. Purinergic system ecto-enzymes participate in the thromboregulation of patients with indeterminate form of Chagas disease. Purinergic Signalling 8, 753–762 (2012). https://doi.org/10.1007/s11302-012-9322-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-012-9322-7

Keywords

Navigation