Skip to main content

Advertisement

Log in

Interaction of medullary P2 and glutamate receptors mediates the vasodilation in the hindlimb of rat

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

In the nucleus tractus solitarii (NTS) of rats, blockade of extracellular ATP breakdown to adenosine reduces arterial blood pressure (AP) increases that follow stimulation of the hypothalamic defense area (HDA). The effects of ATP on NTS P2 receptors, during stimulation of the HDA, are still unclear. The aim of this study was to determine whether activation of P2 receptors in the NTS mediates cardiovascular responses to HDA stimulation. Further investigation was taken to establish if changes in hindlimb vascular conductance (HVC) elicited by electrical stimulation of the HDA, or activation of P2 receptors in the NTS, are relayed in the rostral ventrolateral medulla (RVLM); and if those responses depend on glutamate release by ATP acting on presynaptic terminals. In anesthetized and paralyzed rats, electrical stimulation of the HDA increased AP and HVC. Blockade of P2 or glutamate receptors in the NTS, with bilateral microinjections of suramin (10 mM) or kynurenate (50 mM) reduced only the evoked increase in HVC by 75 % or more. Similar results were obtained with the blockade combining both antagonists. Blockade of P2 and glutamate receptors in the RVLM also reduced the increases in HVC to stimulation of the HDA by up to 75 %. Bilateral microinjections of kynurenate in the RVLM abolished changes in AP and HVC to injections of the P2 receptor agonist α,β-methylene ATP (20 mM) into the NTS. The findings suggest that HDA-NTS-RVLM pathways in control of HVC are mediated by activation of P2 and glutamate receptors in the brainstem in alerting-defense reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abrahams VC, Hilton SM, Malcolm JL (1962) Sensory connexions to the hypothalamus and mid-brain, and their role in the reflex activation of the defence reaction. J Physiol (Lond) 164:1–16

    CAS  Google Scholar 

  2. Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, 4th edn. Academic Press, Inc, San Diego

    Google Scholar 

  3. Coote JH, Hilton SM, Perez-Gonzalez JF (1979) Inhibition of the baroreceptor reflex on stimulation in the brain stem defence centre. J Physiol (Lond) 288:549–560

    CAS  Google Scholar 

  4. Ferreira-Neto ML, Possas OS, Lopes OU, Cravo SL (2005) Evidence for a role of nitric oxide in hindlimb vasodilation induced by hypothalamic stimulation in anesthetized rats. An Acad Bras Cienc 77:245–257

    Article  PubMed  CAS  Google Scholar 

  5. Yardley CP, Hilton SM (1986) The hypothalamic and brainstem areas from which the cardiovascular and behavioural components of the defence reaction are elicited in the rat. J Auton Nerv Syst 15:227–244

    Article  PubMed  CAS  Google Scholar 

  6. Yardley CP, Hilton SM (1987) Vasodilatation in hind-limb skeletal muscle evoked as part of the defence reaction in the rat. J Auton Nerv Syst 19:127–136

    Article  PubMed  CAS  Google Scholar 

  7. Allen GV, Cechetto DF (1992) Functional and anatomical organization of cardiovascular pressor and depressor sites in the lateral hypothalamic area: I. Descending projections. J Comp Neurol 315:313–332

    Article  PubMed  CAS  Google Scholar 

  8. Ciriello J, McMurray JC, Babic T, De Oliveira CVR (2003) Collateral axonal projections from hypothalamic hypocretin neurons to cardiovascular sites in nucleus ambiguus and nucleus tractus solitarius. Brain Res 991:133–141

    Article  PubMed  CAS  Google Scholar 

  9. Date Y, Ueta Y, Yamashita H, Yamaguchi H, Matsukura S et al (1999) Orexins, orexigenic hypothalamic peptides, interact with autonomic, neuroendocrine and neuroregulatory systems. Proc Natl Acad Sci USA 96:748–753

    Article  PubMed  CAS  Google Scholar 

  10. Mifflin SW, Spyer KM, Withington-Wray DJ (1988) Baroreceptor inputs to the nucleus tractus solitarius in the cat: modulation by the hypothalamus. J Physiol (Lond) 399:369–387

    CAS  Google Scholar 

  11. Silva-Carvalho L, Dawid-Milner MS, Spyer KM (1995) The pattern of excitatory inputs to the nucleus tractus solitarii evoked on stimulation in the hypothalamic defence area in the cat. J Physiol (Lond) 487:727–737

    CAS  Google Scholar 

  12. Brown DL, Guyenet PG (1985) Electrophysiological study of cardiovascular neurons in the rostral ventrolateral medulla in rats. Circ Res 56:359–369

    Article  PubMed  CAS  Google Scholar 

  13. Cravo SL, Possas OS, Ferreira-Neto ML (2003) Rostral ventrolateral medulla: an integrative site for muscle vasodilation during defense-alerting reactions. Cell Mol Neurobiol 23:579–595

    Article  PubMed  Google Scholar 

  14. Yao ST, Barden JA, Lawrence AJ (2001) On the immunohistochemical distribution of ionotropic P2X receptors in the nucleus tractus solitarius of the rat. Neuroscience 108:673–685

    Article  PubMed  CAS  Google Scholar 

  15. Kanjhan R, Housley GD, Burton LD, Christie DL, Kippenberger A et al (1999) Distribution of the P2X2 receptor subunit of the ATP-gated ion channels in the rat central nervous system. J Comp Neurol 407:11–32

    Article  PubMed  CAS  Google Scholar 

  16. Barraco RA, O'Leary DS, Ergene E, Scislo TJ (1996) Activation of purinergic receptor subtypes in the nucleus tractus solitarius elicits specific regional vascular response patterns. J Auton Nerv Syst 59:113–124

    Article  PubMed  CAS  Google Scholar 

  17. Ralevic V, Thomas T, Burnstock G, Spyer KM (1999) Characterization of P2 receptors modulating neural activity in rat rostral ventrolateral medulla. Neuroscience 94:867–878

    Article  PubMed  CAS  Google Scholar 

  18. St Lambert JH, Thomas T, Burnstock G, Spyer KM (1997) A source of adenosine involved in cardiovascular responses to defense area stimulation. Am J Physiol Regul Integr Comp Physiol 272:R195–R200

    CAS  Google Scholar 

  19. Kato F, Shigetomi E (2001) Distinct modulation of evoked and spontaneous EPSCs by purinoceptors in the nucleus tractus solitarii of the rat. J Physiol (Lond) 530:469–486

    Article  CAS  Google Scholar 

  20. Dale N, Gourine AV, Llaudet E, Bulmer D, Thomas T et al (2002) Rapid adenosine release in the nucleus tractus solitarii during defense response in rats: real-time measurement in vivo. J Physiol (Lond) 544:149–160

    Article  CAS  Google Scholar 

  21. Scislo TJ, O'Leary DS (2000) Differential role of ionotropic glutamatergic mechanisms in responses to NTS P(2x) and A(2a) receptor stimulation. Am J Physiol Heart Circ Physiol 278:H2057–H2068

    PubMed  CAS  Google Scholar 

  22. Gu JG, MacDermott AB (1997) Activation of ATP P2X receptors elicits glutamate release from sensory neuron synapses. Nature 389:749–753

    Article  PubMed  CAS  Google Scholar 

  23. Shigetomi E, Kato F (2004) Action potential-independent release of glutamate by Ca2+ entry through presynaptic P2X receptors elicits postsynaptic firing in the brainstem autonomic network. J Neurosci 24:3125–3135

    Article  PubMed  CAS  Google Scholar 

  24. Aicher SA, Saravay RH, Cravo S, Jeske I, Morrison SF et al (1996) Monosynaptic projections from the nucleus tractus solitarii to C1 adrenergic neurons in the rostral ventrolateral medulla: comparison with input from the caudal ventrolateral medulla. J Comp Neurol 373:62–75

    Article  PubMed  CAS  Google Scholar 

  25. Welch WJ, Deng X, Snellen H, Wilcox CS (1994) Validation of miniature ultrasonic transit-time flow probes for measurement of renal blood flow in rats. Am J Physiol 268:F175–F178

    Google Scholar 

  26. Scislo TJ, Augustyniak RA, Barraco RA, Woodbury DJ, O'Leary DS (1997) Activation of P(2x)-purinoceptors in the nucleus tractus solitarius elicits differential inhibition of lumbar and renal sympathetic nerve activity. J Auton Nerv Syst 62:103–110

    Article  PubMed  CAS  Google Scholar 

  27. Ergene E, Dunbar JC, O'Leary DS, Barraco RA (1994) Activation of P2-purinoceptors in the nucleus tractus solitarius mediate depressor responses. Neurosci Lett 174:188–192

    Article  PubMed  CAS  Google Scholar 

  28. Nakazawa K, Inoue K, Ito K, Koizumi S (1995) Inhibition by suramin and reactive blue 2 of GABA and glutamate receptor channels in rat hippocampal neurons. Naunyn Schmiedebergs Arch Pharmacol 351:202–208

    Article  PubMed  CAS  Google Scholar 

  29. Gu JG, Bardoni R, Magherini PC, MacDermott AB (1998) Effects of the P2 purinoceptor antagonists suramin and pyridoxal- phosphate-6-azophenyl-2′,4′-disulfonic acid on glutamatergic synaptic transmission in rat dorsal horn neurons of the spinal cord. Neurosci Lett 253:167–170

    Article  PubMed  CAS  Google Scholar 

  30. Nicholson C (1985) Diffusion from an injected volume of a substance in brain tissue with arbitrary volume fraction and tortuosity. Brain Res 333:325–329

    Article  PubMed  CAS  Google Scholar 

  31. Burnstock G (2004) Cotransmission. Curr Opin Pharmacol 4:47–52

    Article  PubMed  CAS  Google Scholar 

  32. Burnstock G (2009) Purinergic cotransmission. Exp Physiol 94:20–24

    Article  PubMed  CAS  Google Scholar 

  33. Illes P, Wirkner K, Nörenberg W, Masino SA, Dunwiddie TV (2001) Interaction between the transmitters ATP and glutamate in the central nervous system. Drug Dev Res 52:76–82

    Article  CAS  Google Scholar 

  34. Abbracchio MP, Burnstock G, Verkhratsky A, Zimmermann H (2009) Purinergic signalling in the nervous system: an overview. Trends Neurosci 32:19–29

    Article  PubMed  CAS  Google Scholar 

  35. Leone C, Gordon FJ (1989) Is l-glutamate a neurotransmitter of baroreceptor information in the nucleus of the tractus solitarius? J Pharmacol Exp Ther 250:953–962

    PubMed  CAS  Google Scholar 

  36. Pawloski-Dahm C, Gordon FJ (1992) Evidence for a kynurenate-insensitive glutamate receptor in nucleus tractus solitarii. Am J Physiol Heart Circ Physiol 262:H1611–H1615

    CAS  Google Scholar 

  37. Scislo TJ, O'Leary DS (2002) Mechanisms mediating regional sympathoactivatory responses to stimulation of NTS A(1) adenosine receptors. Am J Physiol Heart Circ Physiol 283:H1588–H1599

    PubMed  CAS  Google Scholar 

  38. Talman WT (1989) Kynurenic acid microinjected into the nucleus tractus solitarius of rat blocks the arterial baroreflex but not responses to glutamate. Neurosci Lett 102:247–252

    Article  PubMed  CAS  Google Scholar 

  39. Kitchen AM, O'Leary DS, Scislo TJ (2006) Sympathetic and parasympathetic component of bradycardia triggered by stimulation of NTS P2X receptors. Am J Physiol Heart Circ Physiol 290:H807–H812

    Article  PubMed  CAS  Google Scholar 

  40. Saper CB, Loewy AD, Swanson LW, Cowan WM (1976) Direct hypothalamo-autonomic connections. Brain Res 117:305–312

    Article  PubMed  CAS  Google Scholar 

  41. McClure JM, Rossi NF, Chen H, O'Leary DS, Scislo TJ (2009) Vasopressin is a major vasoconstrictor involved in hindlimb vascular responses to stimulation of adenosine A(1) receptors in the nucleus of the solitary tract. Am J Physiol Heart Circ Physiol 297:H1661–H1672

    Article  PubMed  CAS  Google Scholar 

  42. McClure JM, O'Leary DS, Scislo TJ (2011) Neural and humoral control of regional vascular beds via A1 adenosine receptors located in the nucleus tractus solitarii. Am J Physiol Regul Integr Comp Physiol 300:R744–R755

    Article  PubMed  CAS  Google Scholar 

  43. Sun MK, Hackett JT, Guyenet PG (1988) Sympathoexcitatory neurons of rostral ventrolateral medulla exhibit pacemaker properties in the presence of a glutamate-receptor antagonist. Brain Res 438:23–40

    Article  PubMed  CAS  Google Scholar 

  44. Dampney RA, McAllen RM (1988) Differential control of sympathetic fibres supplying hindlimb skin and muscle by subretrofacial neurones in the cat. J Physiol (Lond) 395:41–56

    CAS  Google Scholar 

  45. Scislo TJ, O'Leary DS (1998) Differential control of renal vs. adrenal sympathetic nerve activity by NTS A(2a) and P(2x) purinoceptors. Am J Physiol Heart Circ Physiol 275:H2130–H2139

    CAS  Google Scholar 

  46. Somogyi P, Minson JB, Morilak D, Llewellyn-Smith I, McIlhinney JR et al (1989) Evidence for an excitatory amino acid pathway in the brainstem and for its involvement in cardiovascular control. Brain Res 496:401–407

    Article  PubMed  CAS  Google Scholar 

  47. Lin LH, Edwards RH, Fremeau RTJ, Fujiyama F, Kaneko T et al (2004) Localization of vesicular glutamate transporters and neuronal nitric oxide synthase in rat nucleus tractus solitarii. Neuroscience 123:247–255

    Article  PubMed  CAS  Google Scholar 

  48. Lin LH, Talman WT (2005) Nitroxidergic neurons in rat nucleus tractus solitarii express vesicular glutamate transporter 3. J Chem Neuroanat 29:179–191

    Article  PubMed  CAS  Google Scholar 

  49. Cravo SL, Morrison SF, Reis DJ (1991) Differentiation of two cardiovascular regions within caudal ventrolateral medulla. Am J Physiol Regul Integr Comp Physiol 261:R985–R994

    CAS  Google Scholar 

  50. Stornetta RL, McQuiston TJ, Guyenet PG (2004) GABAergic and glycinergic presympathetic neurons of rat medulla oblongata identified by retrograde transport of pseudorabies virus and in situ hybridization. J Comp Neurol 479:257–270

    Article  PubMed  CAS  Google Scholar 

  51. Aicher SA, Kurucz OS, Reis DJ, Milner TA (1995) Nucleus tractus solitarius efferent terminals synapse on neurons in the caudal ventrolateral medulla that project to the rostral ventrolateral medulla. Brain Res 693:51–63

    Article  PubMed  CAS  Google Scholar 

  52. Hotta H, Nishijo K, Sato A, Sato Y, Tanzawa S (1991) Stimulation of lumbar sympathetic trunk produces vasoconstriction of the vasa nervorum in the sciatic nerve via α-adrenergic receptors in rats. Neurosci Lett 133:249–252

    Article  PubMed  CAS  Google Scholar 

  53. Vanhoutte PM, Verbeuren TJ, Webb RC (1981) Local modulation of adrenergic neuroeffector interaction in the blood vessel well. Physiol Rev 61:151–247

    PubMed  CAS  Google Scholar 

  54. Kitchen AM, Scislo TJ, O'Leary DS (2000) NTS A2a purinoceptor activation elicits hindlimb vasodilation primarily via a β-adrenergic mechanism. Am J Physiol Heart Circ Physiol 278:H1775–H1782

    PubMed  CAS  Google Scholar 

  55. Morrison SF, Cao WH (2000) Different adrenal sympathetic preganglionic neurons regulate epinephrine and norepinephrine secretion. Am J Physiol Regul Integr Comp Physiol 279:R1763–R1775

    PubMed  CAS  Google Scholar 

  56. Strack AM, Sawyer WB, Platt KB, Loewy AD (1989) CNS cell groups regulating the sympathetic outflow to adrenal gland as revealed by transneuronal cell body labeling with pseudorabies virus. Brain Res 491:274–296

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Willian Seiji Korim is supported by a Macquarie Research Excellence Scholarship and a Coordenadoria de Aperfeiçoamento em Pesquisa (CAPES-DS) Scholarship. Work in the Author's laboratories is supported by the National Health and Medical Research Council of Australia (457069, 457080 and 604002), Australian Research Council (DP110102110), the Garnett Passe and Rodney Williams Memorial Foundation, Macquarie University and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq; #477832/2010-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio L. Cravo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korim, W.S., Ferreira-Neto, M.L., Pedrino, G.R. et al. Interaction of medullary P2 and glutamate receptors mediates the vasodilation in the hindlimb of rat. Purinergic Signalling 8, 715–728 (2012). https://doi.org/10.1007/s11302-012-9318-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-012-9318-3

Keywords

Navigation