Advertisement

Purinergic Signalling

, Volume 8, Issue 2, pp 191–198 | Cite as

P2Y1 receptor activation by photolysis of caged ATP enhances neuronal network activity in the developing olfactory bulb

  • Timo Fischer
  • Natalie Rotermund
  • Christian Lohr
  • Daniela HirnetEmail author
Brief Communication

Abstract

It has recently been shown that adenosine-5′-triphosphate (ATP) is released together with glutamate from sensory axons in the olfactory bulb, where it stimulates calcium signaling in glial cells, while responses in identified neurons to ATP have not been recorded in the olfactory bulb yet. We used photolysis of caged ATP to elicit a rapid rise in ATP and measured whole-cell current responses in mitral cells, the output neurons of the olfactory bulb, in acute mouse brain slices. Wide-field photolysis of caged ATP evoked an increase in synaptic inputs in mitral cells, indicating an ATP-dependent increase in network activity. The increase in synaptic activity was accompanied by calcium transients in the dendritic tuft of the mitral cell, as measured by confocal calcium imaging. The stimulating effect of ATP on the network activity could be mimicked by photo release of caged adenosine 5′-diphosphate, and was inhibited by the P2Y1 receptor antagonist MRS 2179. Local photolysis of caged ATP in the glomerulus innervated by the dendritic tuft of the recorded mitral cell elicited currents similar to those evoked by wide-field illumination. The results indicate that activation of P2Y1 receptors in the glomerulus can stimulate network activity in the olfactory bulb.

Keywords

Mitral cell Calcium imaging Synaptic integration Olfactory glomerulus Patch clamp 

Notes

Acknowledgments

Supported by the Deutsche Forschungsgemeinschaft (LO 779/6).

Supplementary material

11302_2011_9286_MOESM1_ESM.jpg (615 kb)
Supplementary figure 1 Analysis of the current response. The integral, i.e., the area enclosed by the current trace and the baseline (gray area) was calculated (JPEG 615 kb)
11302_2011_9286_MOESM2_ESM.jpg (996 kb)
Supplementary figure 2 Olfactory bulb brain slice. a Mitral cell somata build the narrow band of the mitral cell layer (ML). b At high magnification, individual somata of mitral cells can be distinguished (asterisks; JPEG 996 kb)

References

  1. 1.
    Burnstock G (2006) Pathophysiology and therapeutic potential of purinergic signaling. Pharmacol Rev 58:58–86PubMedCrossRefGoogle Scholar
  2. 2.
    Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87:659–797PubMedCrossRefGoogle Scholar
  3. 3.
    Abbracchio M, Burnstock G, Verkhratsky A, Zimmermann H (2009) Purinergic signalling in the nervous system: an overview. Trends Neurosci 32:19–29PubMedCrossRefGoogle Scholar
  4. 4.
    Illes P, Alexandre Ribeiro J (2004) Molecular physiology of P2 receptors in the central nervous system. Eur J Pharmacol 483:5–17PubMedCrossRefGoogle Scholar
  5. 5.
    Zimmermann H (2006) Ectonucleotidases in the nervous system. Novartis Found Symp 276:113–128, discussion 128–30, 233–7, 275–81PubMedCrossRefGoogle Scholar
  6. 6.
    Burnstock G, Fredholm B, Verkhratsky A (2011) Adenosine and ATP receptors in the brain. Curr Top Med Chem 11:973–1011PubMedCrossRefGoogle Scholar
  7. 7.
    Edwards FA, Gibb AJ, Colquhoun D (1992) ATP receptor-mediated synaptic currents in the central nervous system. Nature 359:144–147PubMedCrossRefGoogle Scholar
  8. 8.
    Pankratov Y, Castro E, Miras-Portugal MT, Krishtal O (1998) A purinergic component of the excitatory postsynaptic current mediated by P2X receptors in the CA1 neurons of the rat hippocampus. Eur J Neurosci 10:3898–3902PubMedCrossRefGoogle Scholar
  9. 9.
    Pankratov Y, Lalo U, Verkhratsky A, North R (2007) Quantal release of ATP in mouse cortex. J Gen Physiol 129:257–265PubMedCrossRefGoogle Scholar
  10. 10.
    Goncalves J, Queiroz G (2008) Presynaptic adenosine and P2Y receptors. Handb Exp Pharmacol 184:339–372PubMedCrossRefGoogle Scholar
  11. 11.
    Deitmer JW, Brockhaus J, Casel D (2006) Modulation of synaptic activity in Purkinje neurons by ATP. Cerebellum 5:49–54PubMedCrossRefGoogle Scholar
  12. 12.
    Bilbao PS, Katz S, Boland R (2011) Interaction of purinergic receptors with GPCRs, ion channels, tyrosine kinase and steroid hormone receptors orchestrates cell function. Purinergic Signal. doi: 10.1007/s11302-011-9260-9
  13. 13.
    Lohr C, Thyssen A, Hirnet D (2011) Extrasynaptic neuron-glia communication: the how and why. Commun Integr Biol 4:109–111PubMedGoogle Scholar
  14. 14.
    Rieger A, Deitmer JW, Lohr C (2007) Axon-glia communication evokes calcium signaling in olfactory ensheathing cells of the developing olfactory bulb. Glia 55:352–359PubMedCrossRefGoogle Scholar
  15. 15.
    Thyssen A, Hirnet D, Wolburg H, Schmalzing G, Deitmer J, Lohr C (2010) Ectopic vesicular neurotransmitter release along sensory axons mediates neurovascular coupling via glial calcium signaling. Proc Natl Acad Sci U S A 107:15258–15263PubMedCrossRefGoogle Scholar
  16. 16.
    Doengi M, Deitmer J, Lohr C (2008) New evidence for purinergic signaling in the olfactory bulb: A2A and P2Y1 receptors mediate intracellular calcium release in astrocytes. FASEB J 22:2368–2378PubMedCrossRefGoogle Scholar
  17. 17.
    Guo W, Xu X, Gao X, Burnstock G, He C, Xiang Z (2008) Expression of P2X5 receptors in the mouse CNS. Neuroscience 156:673–692PubMedCrossRefGoogle Scholar
  18. 18.
    Kanjhan R, Housley GD, Burton LD, Christie DL, Kippenberger A, Thorne PR, Luo L, Ryan AF (1999) Distribution of the P2X2 receptor subunit of the ATP-gated ion channels in the rat central nervous system. J Comp Neurol 407:11–32PubMedCrossRefGoogle Scholar
  19. 19.
    Le KT, Villeneuve P, Ramjaun AR, McPherson PS, Beaudet A, Seguela P (1998) Sensory presynaptic and widespread somatodendritic immunolocalization of central ionotropic P2X ATP receptors. Neuroscience 83:177–190PubMedCrossRefGoogle Scholar
  20. 20.
    Vulchanova L, Arvidsson U, Riedl M, Wang J, Buell G, Surprenant A, North RA, Elde R (1996) Differential distribution of two ATP-gated channels (P2X receptors) determined by immunocytochemistry. Proc Natl Acad Sci U S A 93:8063–8067PubMedCrossRefGoogle Scholar
  21. 21.
    De Saint JD, Hirnet D, Westbrook G, Charpak S (2009) External tufted cells drive the output of olfactory bulb glomeruli. J Neurosci 29:2043–2052CrossRefGoogle Scholar
  22. 22.
    Doengi M, Coulon P, Pape HC, Deitmer JW, Lohr C (2009) GABA uptake-dependent Ca2+ signaling in developing olfactory bulb astrocytes. Proc Natl Acad Sci U S A 106:17570–17575PubMedCrossRefGoogle Scholar
  23. 23.
    Wurm A, Lipp S, Pannicke T, Linnertz R, Krügel U, Schulz A, Färber K, Zahn D, Grosse J, Wiedemann P, Chen J, Schöneberg T, Illes P, Reichenbach A, Bringmann A (2010) Endogenous purinergic signaling is required for osmotic volume regulation of retinal glial cells. J Neurochem 112:1261–1272PubMedCrossRefGoogle Scholar
  24. 24.
    Hamilton N, Vayro S, Wigley R, Butt AM (2010) Axons and astrocytes release ATP and glutamate to evoke calcium signals in NG2-glia. Glia 58:66–79PubMedCrossRefGoogle Scholar
  25. 25.
    Najac M, De Saint JD, Reguero L, Grandes P, Charpak S (2011) Monosynaptic and polysynaptic feed-forward inputs to mitral cells from olfactory sensory neurons. J Neurosci 31:8722–8729PubMedCrossRefGoogle Scholar
  26. 26.
    Langer D, Hammer K, Koszalka P, Schrader J, Robson S, Zimmermann H (2008) Distribution of ectonucleotidases in the rodent brain revisited. Cell Tissue Res 334:199–217PubMedCrossRefGoogle Scholar
  27. 27.
    Simon J, Kidd EJ, Smith FM, Chessell IP, Murrell-Lagnado R, Humphrey PP, Barnard EA (1997) Localization and functional expression of splice variants of the P2X2 receptor. Mol Pharmacol 52:237–248PubMedGoogle Scholar
  28. 28.
    Collo G, North RA, Kawashima E, Merlo-Pich E, Neidhart S, Surprenant A, Buell G (1996) Cloning OF P2X5 and P2X6 receptors and the distribution and properties of an extended family of ATP-gated ion channels. J Neurosci 16:2495–2507PubMedGoogle Scholar
  29. 29.
    Soto F, Garcia-Guzman M, Gomez-Hernandez JM, Hollmann M, Karschin C, Stuhmer W (1996) P2X4: an ATP-activated ionotropic receptor cloned from rat brain. Proc Natl Acad Sci U S A 93:3684–3688PubMedCrossRefGoogle Scholar
  30. 30.
    Buell G, Lewis C, Collo G, North RA, Surprenant A (1996) An antagonist-insensitive P2X receptor expressed in epithelia and brain. EMBO J 15:55–62PubMedGoogle Scholar
  31. 31.
    Bo X, Zhang Y, Nassar M, Burnstock G, Schoepfer R (1995) A P2X purinoceptor cDNA conferring a novel pharmacological profile. FEBS Lett 375:129–133PubMedCrossRefGoogle Scholar
  32. 32.
    Hassenklöver T, Schulz P, Peters A, Schwartz P, Schild D, Manzini I (2010) Purinergic receptor-mediated Ca signaling in the olfactory bulb and the neurogenic area of the lateral ventricles. Purinergic Signal 6:429–445PubMedCrossRefGoogle Scholar
  33. 33.
    Schachter JB, Li Q, Boyer JL, Nicholas RA, Harden TK (1996) Second messenger cascade specificity and pharmacological selectivity of the human P2Y1-purinoceptor. Br J Pharmacol 118:167–173PubMedGoogle Scholar
  34. 34.
    Simon J, Webb TE, Barnard EA (1997) Distribution of dATP alpha S binding sites in the adult rat neuraxis. Neuropharmacology 36:1243–1251PubMedCrossRefGoogle Scholar
  35. 35.
    Kozlov AS, Angulo MC, Audinat E, Charpak S (2006) Target cell-specific modulation of neuronal activity by astrocytes. Proc Natl Acad Sci U S A 103:10058–10063PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Timo Fischer
    • 1
  • Natalie Rotermund
    • 1
  • Christian Lohr
    • 1
  • Daniela Hirnet
    • 1
    Email author
  1. 1.Division of Neurophysiology, Biocenter GrindelUniversity of HamburgHamburgGermany

Personalised recommendations