Skip to main content
Log in

Physiological level of norepinephrine increases adenine nucleotides hydrolysis in rat blood serum

  • Brief Communication
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Extracellular adenosine 5′-triphosphate (ATP) and its breakdown products, adenosine 5′-diphosphate (ADP) and adenosine, have significant effects on a variety of biological processes. NTPDase enzymes, responsible for adenine nucleotides hydrolysis, are considered the major regulators of purinergic signaling in the blood. Previous work by our group demonstrated that ATP and ADP hydrolysis in rat blood serum are higher during the dark (activity) phase compared to the light (rest) phase. In nocturnal animals (e.g., rats), important physiological changes occur during the dark phase, such as increased circulating levels of melatonin, corticosterone, and norepinephrine (NE). This study investigated the physiological effects, in vivo and in vitro, of melatonin, dexamethasone, and NE upon nucleotides hydrolysis in rat blood serum. For in vivo experiments, the animals received a single injection of saline (control), melatonin (0.05 mg/kg), dexamethasone (0.1 mg/kg), or NE (0.03 mg/kg). For in vitro experiments, melatonin (1.0 nM), dexamethasone (1.0 μM), or NE (1.0 nM) was added directly to the reaction medium with blood serum before starting the enzyme assay. The results demonstrated that ATP and ADP hydrolysis in both in vitro and in vivo experiments were significantly higher with NE treatment compared to control (in vitro: ATP = 36.63%, ADP = 22.43%, P < 0.05; in vivo: ATP = 44.1%, ADP = 37.28%, P < 0.001). No significant differences in adenine nucleotides hydrolysis were observed with melatonin and dexamethasone treatments. This study suggests a modulatory role of NE in the nucleotidases pathway, decreasing extracellular ATP and ADP, and suggests that NE might modulate its own release by increasing the activities of soluble nucleotidases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Barbarestani M, Kashani IR, Etesam F et al (2006) Evaluation of human breast adenocarcinoma (MCF-7) cells proliferation in co-culture with human adipocytes in three dimensional collagen gel matrix: norepinephrine as a lipolytic factor. Iran Biomed J 10:125–131

    CAS  Google Scholar 

  2. Barnard EA (2000) Imagination and reality in the search for the P2Y receptors. J Auton Nerv Syst 81:10–15

    Article  PubMed  CAS  Google Scholar 

  3. Benedict CR, Shelton B, Johnstone DE et al (1996) Prognostic significance of plasma norepinephrine in patients with asymptomatic left ventricular dysfunction. SOLVD Investigators. Circulation 94:690–697

    PubMed  CAS  Google Scholar 

  4. Blask DE, Wilson ST, Zalatan F (1997) Physiological melatonin inhibition of human breast cancer cell growth in vitro: evidence for a glutathione-mediated pathway. Cancer Res 57:1909–1914

    PubMed  CAS  Google Scholar 

  5. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  6. Brown CM, Collis MG (1983) Adenosine A1 receptor mediated inhibition of nerve stimulation-induced contractions of the rabbit portal vein. Eur J Pharmacol 93:277–282

    Article  PubMed  CAS  Google Scholar 

  7. Burnstock G, Verkhratsky A (2010) Long-term (trophic) purinergic signalling: purinoceptors control cell proliferation, differentiation and death. Cell Death Dis 1:e9

    Article  PubMed  CAS  Google Scholar 

  8. Burnstock G (2011) Introductory overview of purinergic signalling. Front Biosci (Elite Ed) 3:896–900

    Google Scholar 

  9. Chan KM, Delfert D, Junger KD (1986) A direct colorimetric assay for Ca2+-stimulated ATPase activity. Anal Biochem 157:375–380

    Article  PubMed  CAS  Google Scholar 

  10. Corti F, Olson KE, Marcus AJ et al (2011) The expression level of ecto-NTP diphosphohydrolase1/CD39 modulates exocytotic and ischemic release of neurotransmitters in a cellular model of sympathetic neurons. R J Pharmacol Exp Ther 337(2):524–532

    Article  CAS  Google Scholar 

  11. Deaglio S, Robson SC (2011) Ectonucleotidases as regulators of purinergic signaling in thrombosis, inflammation, and immunity. Adv Pharmacol 61:301–332

    Article  PubMed  CAS  Google Scholar 

  12. Detanico BC, Souza A, Medeiros LF et al (2010) 24-hour temporal pattern of NTPDase and 5′-nucleotidase enzymes in rat blood serum. Chronobiol Int 27:1751–1761

    Article  PubMed  CAS  Google Scholar 

  13. Enjyoji K, Sévigny J, Lin Y et al (1999) Targeted disruption of cd39/ATP diphosphohydrolase results in disordered hemostasis and thromboregulation. Nat Med 5:1010–1017

    Article  PubMed  CAS  Google Scholar 

  14. Furukoji E, Tanaka N, Yamashita A et al (2008) Ecto-nucleoside triphosphate diphosphohydrolase inhibits ATP- and ADP-induced vasoconstriction. Thromb Res 121:583–585

    Article  PubMed  CAS  Google Scholar 

  15. Gachet C (2008) P2 receptors, platelet function and pharmacological implications. Thromb Haemost 99(3):466–472

    PubMed  CAS  Google Scholar 

  16. Goepfert C, Imai M, Brouard S et al (2000) CD39 modulates endothelial cell activation and apoptosis. Mol Med 6:591–603

    PubMed  CAS  Google Scholar 

  17. Goepfert C, Sundberg C, Sévigny J et al (2001) Disordered cellular migration and angiogenesis in cd39-null mice. Circulation 104:3109–3115

    Article  PubMed  CAS  Google Scholar 

  18. Hwang ST, Henning SJ (2000) Hormonal regulation of expression of ileal bile acid binding protein in suckling rats. Am J Physiol Regul Integr Comp Physiol 278:R1555–R1563

    PubMed  CAS  Google Scholar 

  19. Illes P, Jackisch R, Regenold JT (1988) Presynaptic P1-purinoceptors in jejunal branches of the rabbit mesenteric artery and their possible function. J Physiol 397:13–29

    PubMed  CAS  Google Scholar 

  20. Imai M, Takigami K, Guckelberger O et al (2000) Recombinant adenoviral mediated CD39 gene transfer prolongs cardiac xenograft survival. Transplantation 70:864–870

    Article  PubMed  CAS  Google Scholar 

  21. Iversen LL, Whitby LG (1962) Retention of injected catechol amines by the mouse. Br J Pharmacol Chemother 19:355–364

    PubMed  CAS  Google Scholar 

  22. Knowles A (2011) The GDA1_CD39 superfamily: NTPDases with diverse functions. Purinergic Signaling 7(21):45

    Google Scholar 

  23. Kübler W, Strasser RH (1994) Signal transduction in myocardial ischaemia. Eur Heart J 15:437–445

    PubMed  Google Scholar 

  24. Kunapuli SP, Daniel JL (1998) P2 receptor subtypes in the cardiovascular system. Biochem J 336:513–523

    PubMed  CAS  Google Scholar 

  25. Machida T, Heerdt PM, Reid AC et al (2005) Ectonucleoside triphosphate diphosphohydrolase 1/CD39, localized in neurons of human and porcine heart, modulates ATP-induced norepinephrine exocytosis. J Pharmacol Exp Ther May 313(2):570–577

    Article  CAS  Google Scholar 

  26. Markus RP, Franco DG, Carvalho LA et al (2009) Acute increase in urinary 6-sulfatoximelatonin after clomipramine, as a predictive measure for emotional improvement. J Psychopharmacol 24:855–860

    Article  PubMed  Google Scholar 

  27. Mihaylova-Todorova ST, Todorov LD, Westfall DP (2002) Enzyme kinetics and pharmacological characterization of nucleotidases released from the guinea pig isolated vas deferens during nerve stimulation: evidence for a soluble ecto-nucleoside triphosphate diphosphohydrolase-like ATPase and a soluble ecto-5′-nucleotidase-like AMPase. J Pharmacol Exp Ther 302:992–1001

    Article  PubMed  CAS  Google Scholar 

  28. Miller HL, Ekstrom RD, Mason GA et al (2001) Noradrenergic function and clinical outcome in antidepressant pharmacotherapy. Neuropsychopharm 24:617–623

    Article  CAS  Google Scholar 

  29. Motte S, Communi D, Pirotton S, Boeynaems JM (1995) Involvement of multiple receptors in the actions of extracellular ATP: the example of vascular endothelial cells. Int J Biochem Cell Biol 27:1–7

    Article  PubMed  CAS  Google Scholar 

  30. Oses JP, Cardoso CM, Germano RA et al (2004) Soluble NTPDase: an additional system of nucleotide hydrolysis in rat blood serum. Life Sci 74:3275–3284

    Article  PubMed  Google Scholar 

  31. Pinsky DJ, Broekman MJ, Peschon JJ, Stocking KL et al (2002) Elucidation of the thromboregulatory role of CD39/ectoapyrase in the ischemic brain. J Clin Invest 109:1031–1040

    PubMed  CAS  Google Scholar 

  32. Ralevic V, Burnstock G (1990) Postjunctional synergism of noradrenaline and adenosine 5′-triphosphate in the mesenteric arterial bed of the rat. Eur J Pharmacol 175:291–299

    Article  PubMed  CAS  Google Scholar 

  33. Ralevic V (2009) Purines as neurotransmitters and neuromodulators in blood vessels. Curr Vasc Pharmacol 7:3–14

    Article  PubMed  CAS  Google Scholar 

  34. Robson SC, Wu Y, Sun XF, Knosalla C et al (2005) Ectonucleotidases of CD39 family modulate vascular inflammation and thrombosis in transplantation. Semin Thromb Hemost 31:217–233

    Article  PubMed  CAS  Google Scholar 

  35. Rücker B, Oses JP, Kirst IB et al (2003) Effects of phenylalanine and phenylpyruvate on ATP-ADP hydrolysis by rat blood serum. Amino Acids 24:383–388

    Article  PubMed  Google Scholar 

  36. Runge D, Schmidt H, Christ B, Jungermann K (1991) Mechanism of the permissive action of dexamethasone on the glucagon-dependent activation of the phosphoenolpyruvate carboxykinase gene in cultured rat hepatocytes. Eur J Biochem 198:641–649

    Article  PubMed  CAS  Google Scholar 

  37. Sesti C, Broekman MJ, Drosopoulos JH et al (2002) EctoNucleotidase in cardiac sympathetic nerve endings modulates ATP-mediated feedback of norepinephrine release. J Pharmacol Exp Ther 300:605–611

    Article  PubMed  CAS  Google Scholar 

  38. Somova EV, Kolodub FA, Bondarenko LA (2001) Chronobiological aspects of melatonin-produced antioxidant effects in senescent rats. Bull Exp Biol Med 132:887–889

    Article  PubMed  CAS  Google Scholar 

  39. Todorov LD, Mihaylova-Todorova S, Westfall TD et al (1997) Neuronal release of soluble nucleotidases and their role in neurotransmitter inactivation. Nature 387:76–79

    Article  PubMed  CAS  Google Scholar 

  40. Westfall TC, Meldrum MJ (1985) Alterations in the release of norepinephrine at the vascular neuroeffector junction in hypertension. Annu Rev Pharmacol Toxicol 25:621–641

    Article  PubMed  CAS  Google Scholar 

  41. Westfall TD, Menzies JR, Liberman R et al (2000) Release of a soluble ATPase from the rabbit isolated vas deferens during nerve stimulation. Br J Pharmacol 131:909–914

    Article  PubMed  CAS  Google Scholar 

  42. Westfall DP, Todorov LD, Mihaylova-Todorova ST (2002) ATP as a cotransmitter in sympathetic nerves and its inactivation by releasable enzymes. J Pharmacol Exp Ther 303:439–444

    Article  PubMed  CAS  Google Scholar 

  43. Yegutkin GG (1997) Kinetic analysis of enzymatic hydrolysis of ATP in human and rat blood serum. Biochemistry (Mosc) 62:619–622

    CAS  Google Scholar 

  44. Yegutkin GG, Samburski SS, Jalkanen S (2003) Soluble purine-converting enzymes circulate in human blood and regulate extracellular ATP level via counteracting pyrophosphatase and phosphotransfer reactions. FASEB J 17:1328–1330

    PubMed  CAS  Google Scholar 

  45. Yegutkin GG (2008) Nucleotide- and nucleoside-converting ectoenzymes: important modulators of purinergic signalling cascade. Biochim Biophys Acta 1783:673–694

    Article  PubMed  CAS  Google Scholar 

  46. Zimmermann H, Braun N (1999) Ecto-nucleotidases–molecular structures, catalytic properties, and functional roles in the nervous system. Prog Brain Res 120:371–385

    Article  PubMed  CAS  Google Scholar 

  47. Zimmermann H (2000) Extracellular metabolism of ATP and other nucleotides. Naunyn Schmiedebergs Arch Pharmacol 362:299–309

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the following Brazilian Funding Agencies: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq; Dr. I.L.S. Torres), Graduate Research Group (GPPG) at Hospital de Clínicas de Porto Alegre (Dr. I.L.S. Torres, Grant no. 08-150), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Conflict of interest

The authors declare that they have no conflict of interest. The authors alone are responsible for the content and writing of the paper.

Ethical standard

All experiments were performed in accordance with the Brazilian Community’s Council Directive of October 8, 2008 (Law No. 11.794) with all efforts made to minimize animal suffering and using the number of animals necessary to produce reliable scientific data. The experimental protocol was approved by the Ethics Committee at the Hospital de Clínicas de Porto Alegre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iraci Lucena da Silva Torres.

Additional information

Bernardo Carraro Detanico and Joanna Ripoll Rozisky are the first authors of this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Detanico, B.C., Rozisky, J.R., Battastini, A.M.O. et al. Physiological level of norepinephrine increases adenine nucleotides hydrolysis in rat blood serum. Purinergic Signalling 7, 373–379 (2011). https://doi.org/10.1007/s11302-011-9253-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-011-9253-8

Keywords

Navigation