Skip to main content
Log in

Involvement of P2X receptors in the NAD+-induced rise in [Ca2+]i in human monocytes

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

In the present study, we show that the extracellular addition of nicotinamide adenine dinucleotide (NAD+) induces a transient rise in [Ca2+]i in human monocytes caused by an influx of extracellular calcium. The NAD+-induced Ca2+ response was prevented by adenosine triphosphate (ATP), suggesting the involvement of ATP receptors. Of the two subtypes of ATP receptors (P2X and P2Y), the P2X receptors were considered the most likely candidates. By the use of subtype preferential agonists and antagonists, we identified P2X1, P2X4, and P2X7 receptors being engaged in the NAD+-induced rise in [Ca2+]i. Among the P2X receptor subtypes, the P2X7 receptor is unique in facilitating the induction of nonselective pores that allow entry of ethidium upon stimulation with ATP. In monocytes, opening of P2X7 receptor-dependent pores strongly depends on specific ionic conditions. Measuring pore formation in response to NAD+, we found that NAD+ unlike ATP lacks the ability to induce this pore-forming response. Whereas as little as 100 μM ATP was sufficient to activate the nonselective pore, NAD+ at concentrations up to 2 mM had no effect. Taken together, these data indicate that despite similarities in the action of extracellular NAD+ and ATP there are nucleotide-specific variations. So far, common and distinct features of the two nucleotides are only beginning to be understood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ziegler M (2000) New functions of a long-known molecule. Emerging roles of NAD in cellular signaling. Eur J Biochem 267:1550–1564 doi:10.1046/j.1432-1327.2000.01187.x

    Article  PubMed  CAS  Google Scholar 

  2. Moss J, Vaughan M (1990) ADP-ribosylating toxins and G proteins: insights into signal transduction. In: Moss J, Vaughan M (eds) American Society for Microbiology, Washington, DC

  3. Berthelier V, Tixier JM, Muller-Steffner H et al (1998) Human CD38 is an authentic NAD(P)+ glycohydrolase. Biochem J 330:1383–1390

    PubMed  CAS  Google Scholar 

  4. Aarhus R, Graeff RM, Dickey DM et al (1995) ADP-ribosyl cyclase and CD38 catalyze the synthesis of a calcium-mobilizing metabolite from NADP. J Biol Chem 270:30327–30333 doi:10.1074/jbc.270.51.30327

    Article  PubMed  CAS  Google Scholar 

  5. Galione A, Lee HC, Busa WB (1991) Ca(2+)-induced Ca2+ release in sea urchin egg homogenates: modulation by cyclic ADP-ribose. Science 253:1143–1146 doi:10.1126/science.1909457

    Article  PubMed  CAS  Google Scholar 

  6. Churchill GC, Okada Y, Thomas JM et al (2002) NAADP mobilizes Ca(2+) from reserve granules, lysosome-related organelles, in sea urchin eggs. Cell 111:703–708 doi:10.1016/S0092-8674(02)01082-6

    Article  PubMed  CAS  Google Scholar 

  7. Gerasimenko JV, Maruyama Y, Yano K et al (2003) NAADP mobilizes Ca2+ from a thapsigargin-sensitive store in the nuclear envelope by activating ryanodine receptors. J Cell Biol 163:271–282 doi:10.1083/jcb.200306134

    Article  PubMed  CAS  Google Scholar 

  8. Perraud AL, Fleig A, Dunn CA et al (2001) ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 411:595–599 doi:10.1038/35079100

    Article  PubMed  CAS  Google Scholar 

  9. Sano Y, Inamura K, Miyake A et al (2001) Immunocyte Ca2+ influx system mediated by LTRPC2. Science 293:1327–1330 doi:10.1126/science.1062473

    Article  PubMed  CAS  Google Scholar 

  10. Franco L, Guida L, Bruzzone S et al (1998) The transmembrane glycoprotein CD38 is a catalytically active transporter responsible for generation and influx of the second messenger cyclic ADP-ribose across membranes. FASEB J 12:1507–1520

    PubMed  CAS  Google Scholar 

  11. Guida L, Bruzzone S, Sturla L et al (2002) Equilibrative and concentrative nucleoside transporters mediate influx of extracellular cyclic ADP-ribose into 3T3 murine fibroblasts. J Biol Chem 277:47097–47105 doi:10.1074/jbc.M207793200

    Article  PubMed  CAS  Google Scholar 

  12. Guida L, Franco L, Bruzzone S et al (2004) Concentrative influx of functionally active cyclic ADP-ribose in dimethyl sulfoxide-differentiated HL-60 cells. J Biol Chem 279:22066–22075 doi:10.1074/jbc.M314137200

    Article  PubMed  CAS  Google Scholar 

  13. Billington RA, Bellomo EA, Floriddia EM et al (2006) A transport mechanism for NAADP in a rat basophilic cell line. FASEB J 20:521–523

    PubMed  CAS  Google Scholar 

  14. De Flora A, Zocchi E, Guida L et al (2004) Autocrine and paracrine calcium signaling by the CD38/NAD+/cyclic ADP-ribose system. Ann N Y Acad Sci 1028:176–191

    PubMed  Google Scholar 

  15. Verderio C, Bruzzone S, Zocchi E et al (2001) Evidence of a role for cyclic ADP-ribose in calcium signalling and neurotransmitter release in cultured astrocytes. J Neurochem 78:646–657 doi:10.1046/j.1471-4159.2001.00455.x

    Article  PubMed  CAS  Google Scholar 

  16. Esguerra M, Miller RF (2002) CD38 expression and NAD+-induced intracellular Ca+ mobilization in isolated retinal Muller cells. Glia 39:314–319 doi:10.1002/glia.10115

    Article  PubMed  Google Scholar 

  17. Sun L, Adebanjo OA, Moonga BS et al (1999) CD38/ADP-ribosyl cyclase: a new role in the regulation of osteoclastic bone resorption. J Cell Biol 146:1161–1172 doi:10.1083/jcb.146.5.1161

    Article  PubMed  CAS  Google Scholar 

  18. Romanello M, Bicego M, Pirulli D et al (2002) Extracellular NAD+: a novel autocrine/paracrine signal in osteoblast physiology. Biochem Biophys Res Commun 299:424–431 doi:10.1016/S0006-291X(02)02665-7

    Article  PubMed  CAS  Google Scholar 

  19. Gerth A, Nieber K, Oppenheimer NJ et al (2004) Extracellular NAD+ regulates intracellular free calcium concentration in human monocytes. Biochem J 382:849–856 doi:10.1042/BJ20040979

    Article  PubMed  CAS  Google Scholar 

  20. Grage-Griebenow E, Lorenzen D, Fetting R et al (1993) Phenotypical and functional characterization of Fc gamma receptor I (CD64)-negative monocytes, a minor human monocyte subpopulation with high accessory and antiviral activity. Eur J Immunol 23:3126–3135 doi:10.1002/eji.1830231213

    Article  PubMed  CAS  Google Scholar 

  21. Grahnert A, Richter S, Siegert F et al (2008) The orthologue of the “acatalytic” mammalian ART4 in chicken is an arginine-specific mono-ADP-ribosyltransferase. BMC Mol Biol 14:86–100 doi:10.1186/1471-2199-9-86

    Article  Google Scholar 

  22. Lambrecht G, Friebe T, Grimm U et al (1992) PPADS, a novel functionally selective antagonist of P2 purinoceptor-mediated responses. Eur J Pharmacol 217:217–219 doi:10.1016/0014-2999(92)90877-7

    Article  PubMed  CAS  Google Scholar 

  23. Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492

    PubMed  CAS  Google Scholar 

  24. Kaufmann A, Musset B, Limberg SH et al (2005) “Host tissue damage” signal ATP promotes non-directional migration and negatively regulates toll-like receptor signaling in human monocytes. J Biol Chem 280:32459–32467 doi:10.1074/jbc.M505301200

    Article  PubMed  CAS  Google Scholar 

  25. Burnstock G (2007) Purine and pyrimidine receptors. Cell Mol Life Sci 64:1471–1483 doi:10.1007/s00018-007-6497-0

    Article  PubMed  CAS  Google Scholar 

  26. Bianchi BR, Lynch KJ, Touma E et al (1999) Pharmacological characterization of recombinant human and rat P2X receptor subtypes. Eur J Pharmacol 376:127–138 doi:10.1016/S0014-2999(99)00350-7

    Article  PubMed  CAS  Google Scholar 

  27. Di Virgilio F, Chiozzi P, Ferrari D et al (2001) Nucleotide receptors: an emerging family of regulatory molecules in blood cells. Blood 97:587–600 doi:10.1182/blood.V97.3.587

    Article  PubMed  Google Scholar 

  28. North RA, Surprenant A (2000) Pharmacology of cloned P2X receptors. Annu Rev Pharmacol Toxicol 40:563–580 doi:10.1146/annurev.pharmtox.40.1.563

    Article  PubMed  CAS  Google Scholar 

  29. Rettinger J, Braun K, Hochmann H et al (2005) Profiling at recombinant homomeric and heteromeric rat P2X receptors identifies the suramin analogue NF449 as a highly potent P2X1 receptor antagonist. Neuropharmacology 48:461–468 doi:10.1016/j.neuropharm.2004.11.003

    Article  PubMed  CAS  Google Scholar 

  30. Gargett CE, Wiley JS (1997) The isoquinoline derivative KN-62 a potent antagonist of the P2Z-receptor of human lymphocytes. Br J Pharmacol 120:1483–1490 doi:10.1038/sj.bjp.0701081

    Article  PubMed  CAS  Google Scholar 

  31. Humphreys BD, Virginio C, Surprenant A et al (1998) Isoquinolines as antagonists of the P2X7 nucleotide receptor: high selectivity for the human versus rat receptor homologues. Mol Pharmacol 54:22–32

    PubMed  CAS  Google Scholar 

  32. Murgia M, Hanau S, Pizzo P et al (1993) Oxidized ATP. An irreversible inhibitor of the macrophage purinergic P2Z receptor. J Biol Chem 268:8199–8203

    PubMed  CAS  Google Scholar 

  33. Buell G, Chessell IP, Michel AD et al (1998) Blockade of human P2X7 receptor function with a monoclonal antibody. Blood 92:3521–3528

    PubMed  CAS  Google Scholar 

  34. North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067

    PubMed  CAS  Google Scholar 

  35. Surprenant A, Rassendren F, Kawashima E et al (1996) The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 272:735–738 doi:10.1126/science.272.5262.735

    Article  PubMed  CAS  Google Scholar 

  36. Rassendren F, Buell GN, Virginio C et al (1997) The permeabilizing ATP receptor, P2X7. Cloning and expression of a human cDNA. J Biol Chem 272:5482–5486 doi:10.1074/jbc.272.9.5482

    Article  PubMed  CAS  Google Scholar 

  37. Gudipaty L, Humphreys BD, Buell G et al (2001) Regulation of P2X(7) nucleotide receptor function in human monocytes by extracellular ions and receptor density. Am J Physiol Cell Physiol 280:C943–C953

    PubMed  CAS  Google Scholar 

  38. Khakh BS, Proctor WR, Dunwiddie TV et al (1999) Allosteric control of gating and kinetics at P2X(4) receptor channels. J Neurosci 19:7289–7299

    PubMed  CAS  Google Scholar 

  39. Ziegler M (2005) A vital link between energy and signal transduction. FEBS J 272:4561–4564 doi:10.1111/j.1742-4658.2005.04893.x

    Article  PubMed  CAS  Google Scholar 

  40. Guse AH, Berg I, da Silva CP et al (1997) Ca2+ entry induced by cyclic ADP-ribose in intact T-lymphocytes. J Biol Chem 272:8546–8550 doi:10.1074/jbc.272.13.8546

    Article  PubMed  CAS  Google Scholar 

  41. Guse AH, da Silva CP, Berg I et al (1999) Regulation of calcium signalling in T lymphocytes by the second messenger cyclic ADP-ribose. Nature 398:70–73 doi:10.1038/18024

    Article  PubMed  CAS  Google Scholar 

  42. Moreschi I, Bruzzone S, Nicholas RA et al (2006) Extracellular NAD+ is an agonist of the human P2Y11 purinergic receptor in human granulocytes. J Biol Chem 281:31419–31429 doi:10.1074/jbc.M606625200

    Article  PubMed  CAS  Google Scholar 

  43. Seman M, Adriouch S, Scheuplein F et al (2003) NAD-induced T cell death: ADP-ribosylation of cell surface proteins by ART2 activates the cytolytic P2X7 purinoceptor. Immunity 19:571–582 doi:10.1016/S1074-7613(03)00266-8

    Article  PubMed  CAS  Google Scholar 

  44. Priel A, Silberberg SD (2004) Mechanism of ivermectin facilitation of human P2X4 receptor channels. J Gen Physiol 123:281–293 doi:10.1085/jgp.200308986

    Article  PubMed  CAS  Google Scholar 

  45. Dubyak GR (2001) Role of P2 receptors in the immune system. In: Abbracchio MP, Williams M (eds) Purinergic and pyrimidinergic signalling II. Springer, Berlin

    Google Scholar 

  46. Falzoni S, Munerati M, Ferrari D et al (1995) The purinergic P2Z receptor of human macrophage cells. Characterization and possible physiological role. J Clin Invest 95:1207–1216 doi:10.1172/JCI117770

    Article  PubMed  CAS  Google Scholar 

  47. Hickman SE, el Khoury J, Greenberg S et al (1994) P2Z adenosine triphosphate receptor activity in cultured human monocyte-derived macrophages. Blood 84:2452–2456

    PubMed  CAS  Google Scholar 

  48. Gu BJ, Zhang WY, Bendall LJ et al (2000) Expression of P2X(7) purinoceptors on human lymphocytes and monocytes: evidence for nonfunctional P2X(7) receptors. Am J Physiol Cell Physiol 279:C1189–C1197

    PubMed  CAS  Google Scholar 

  49. Michel AD, Chessell IP, Humphrey PP (1999) Ionic effects on human recombinant P2X7 receptor function. Naunyn Schmiedebergs Arch Pharmacol 359:102–109 doi:10.1007/PL00005328

    Article  PubMed  CAS  Google Scholar 

  50. Nuttle LC, Dubyak GR (1994) Differential activation of cation channels and non-selective pores by macrophage P2z purinergic receptors expressed in Xenopus oocytes. J Biol Chem 269:13988–13996

    PubMed  CAS  Google Scholar 

  51. Wiley JS, Chen R, Wiley MJ et al (1992) The ATP4– receptor-operated ion channel of human lymphocytes: inhibition of ion fluxes by amiloride analogs and by extracellular sodium ions. Arch Biochem Biophys 292:411–418 doi:10.1016/0003-9861(92)90010-T

    Article  PubMed  CAS  Google Scholar 

  52. Virginio C, MacKenzie A, North RA et al (1999) Kinetics of cell lysis, dye uptake and permeability changes in cells expressing the rat P2X7 receptor. J Physiol 519:335–346 doi:10.1111/j.1469-7793.1999.0335m.x

    Article  PubMed  CAS  Google Scholar 

  53. Schilling WP, Wasylyna T, Dubyak GR et al (1999) Maitotoxin and P2Z/P2X(7) purinergic receptor stimulation activate a common cytolytic pore. Am J Physiol 277:C766–C776

    PubMed  CAS  Google Scholar 

  54. Jiang LH, Rassendren F, MacKenzie A et al (2005) N-methyl-d-glucamine and propidium dyes utilize different permeation pathways at rat P2X(7) receptors. Am J Physiol Cell Physiol 289:C1295–C1302 doi:10.1152/ajpcell.00253.2005

    Article  PubMed  CAS  Google Scholar 

  55. Pelegrin P, Surprenant A (2006) Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor. EMBO J 25:5071–5082 doi:10.1038/sj.emboj.7601378

    Article  PubMed  CAS  Google Scholar 

  56. Pfister M, Ogilvie A, da Silva CP et al (2001) NAD degradation and regulation of CD38 expression by human monocytes/macrophages. Eur J Biochem 268:5601–5608 doi:10.1046/j.1432-1033.2001.02495.x

    Article  PubMed  CAS  Google Scholar 

  57. Haag F, Adriouch S, Braß A et al (2007) Extracellular NAD and ATP: partners in immune cell modulation. Purinergic Signal 3:71–81 doi:10.1007/s11302-006-9038-7

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by the Deutsche Forschungsgemeinschaft (HA 2484/1-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunna Hauschildt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grahnert, A., Klein, C. & Hauschildt, S. Involvement of P2X receptors in the NAD+-induced rise in [Ca2+]i in human monocytes. Purinergic Signalling 5, 309–319 (2009). https://doi.org/10.1007/s11302-009-9144-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-009-9144-4

Keywords

Navigation