Skip to main content
Log in

Quantitative trait loci related to growth and wood quality traits in Eucalyptus grandis W. Hill identified through single- and multi-trait genome-wide association studies

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

The aim of this study was to conduct single- and multi-trait genome wide association studies (GWAS) and identify quantitative trait loci (QTLs) for the expression of phenotypic traits in Eucalyptus grandis. We evaluated an open-pollinated breeding population with 1772 genotypes composed of 25 different families established using a randomized complete block design. We performed single-trait GWAS using the fixed and random model circulating probability unification (FarmCPU) and multi-trait GWAS for genetically correlated phenotypic traits using the multi-trait mixed model (MTMM). Then, gene annotation was identified through the Phytozome database. The FarmCPU model identified 43 and 38 QTLs that are significantly associated with growth and wood quality traits, respectively. Similarly, 40 pleiotropic QTLs were discovered using the MTMM model. Gene ontology for single-trait analysis identified loci responsible for regulating several important biological processes in different tissues and at different stages of maturation. On the other hand, the multi-trait model identified loci associated with gibberellin signaling, which regulates several aspects of plant growth and development, as well as loci related to the reinforcement of cell wall composition. Our study demonstrates the complex nature of E. grandis quantitative traits and provides new evidence of loci not described before which are associated with the expression of important phenotypic traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Code availability

Not applicable.

References

  • Ballesta P, Bush D, Silva FF, Mora F (2020) Genomic predictions using low-density SNP markers, pedigree and GWAS information: a case study with the non-model species Eucalyptus cladocalyx. Plants 9:99

    Article  CAS  Google Scholar 

  • Bardou P, Mariette J, Escudié F et al (2014) jvenn: an interactive Venn diagram viewer. BMC Bioinformatics 15:1–7

    Article  Google Scholar 

  • Barkan A, Small I (2014) Pentatricopeptide repeat proteins in plants. Annu Rev Plant Biol 65:415–442

    Article  CAS  Google Scholar 

  • Bartholomé J, Mandrou E, Mabiala A et al (2015) High-resolution genetic maps of Eucalyptus improve Eucalyptus grandis genome assembly. New Phytol 206:1283–1296

    Article  Google Scholar 

  • Bates D, Vazquez AI (2013) Pedigreemm: pedigree-based mixed-effects models. http://pedigreemm.r-forge.r-project.org/

  • Beyger JW, Nairn JG (1986) Some factors affecting the microencapsulation of pharmaceuticals with cellulose acetate phthalate. J Pharm Sci 75:573–578

    Article  CAS  Google Scholar 

  • Bush WS, Moore JH (2012) Genome-wide association studies. PLoS Comput Biol 8:e1002822

    Article  CAS  Google Scholar 

  • Cappa EP, El-Kassaby YA, Garcia MN et al (2013) Impacts of population structure and analytical models in genome-wide association studies of complex traits in forest trees: a case study in Eucalyptus globulus. PLoS ONE 8(11):1–16

    Article  Google Scholar 

  • Carere CR, Sparling R, Cicek N, Levin DB (2008) Third generation biofuels via direct cellulose fermentation. Int J Mol Sci 9:1342–1360

    Article  CAS  Google Scholar 

  • Carocha V, Soler M, Hefer C et al (2015) Genome-wide analysis of the lignin toolbox of Eucalyptus grandis. New Phytol 206:1297–1313

    Article  CAS  Google Scholar 

  • Carroll A, Somerville C (2009) Cellulosic biofuels. Annu Rev Plant Biol 60:165–182

    Article  CAS  Google Scholar 

  • Chakraborty T, Akhtar N (2021) Biofertilizers: prospects and challenges for future. Biofertilizers: Study and Impact 575–590

  • Covarrubias-Pazaran G (2016) Genome-assisted prediction of quantitative traits using the R package sommer. PLoS ONE 11:1–16

    Article  Google Scholar 

  • Dasgupta M, Parveen ABM, Shanmugavel S et al (2021) Targeted re-sequencing and genome-wide association analysis for wood property traits in breeding population of Eucalyptus tereticornis× E. grandis. Genomics 113:4276–4292

    Article  Google Scholar 

  • Denis M, Bouvet J-M (2013) Efficiency of genomic selection with models including dominance effect in the context of Eucalyptus breeding. Tree Genet Genomes 9:37–51

    Article  Google Scholar 

  • Do C, Waples RS, Peel D et al (2014) NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour 14:209–214

    Article  CAS  Google Scholar 

  • Doyle J, Doyle JL (1987) Genomic plant DNA preparation from fresh tissue-CTAB method. Phytochem Bull 19:11–15

    Google Scholar 

  • Fisher RA (1918) XV. The correlation between relatives on the supposition of Mendelian inheritance. Earth Environ Sci Trans R Soc Edinburgh 52:399–433

    Google Scholar 

  • Fox J, Weisberg S, Adler D, et al (2012) Package ‘car.’ Vienna R Found Stat Comput 16:

  • Freeman JS, Potts BM, Downes GM et al (2013) Stability of quantitative trait loci for growth and wood properties across multiple pedigrees and environments in Eucalyptus globulus. New Phytol 198:1121–1134

    Article  CAS  Google Scholar 

  • Gallo R, Pantuza IB, dos Santos GA et al (2018) Growth and wood quality traits in the genetic selection of potential Eucalyptus dunnii Maiden clones for pulp production. Ind Crops Prod 123:434–441

    Article  CAS  Google Scholar 

  • Garrick DJ, Taylor JF, Fernando RL (2009) Deregressing estimated breeding values and weighting information for genomic regression analyses. Genet Sel Evol 41:1–8

    Article  Google Scholar 

  • Gilmour A, Gogel B, Cullis B, et al. (2015) ASReml User Guide Release 4.1. Hemel Hempstead: VSN International

  • Giri BR, Poudel S, Kim DW (2020) Cellulose and its derivatives for application in 3D printing of pharmaceuticals. J Pharm Investig 1–22

  • Granato I, Galli G, de Oliveira Couto E, et al (2018) snpReady: a tool to assist breeders in genomic analysis

  • Grattapaglia D (2008) Genomics of Eucalyptus, a global tree for energy, paper, and wood. In: Genomics of tropical crop plants. Springer, pp 259–298

  • Grattapaglia D, Plomion C, Kirst M et al (2009) Genomics of growth traits in forest trees. Curr Opin Plant Biol 12(2):148–156

    Article  CAS  Google Scholar 

  • Grattapaglia D, Silva-Junior OB, Resende RT et al (2018) Quantitative genetics and genomics converge to accelerate forest tree breeding. Front Plant Sci 22(9):1–16

    Google Scholar 

  • Hao Z, Lv D, Ge Y et al (2020) RIdeogram: drawing SVG graphics to visualize and map genome-wide data on the idiograms. PeerJ Comput Sci 6(e251):1–11

    Google Scholar 

  • Hayes B (2013) Overview of statistical methods for genome-wide association studies (GWAS). Genome-wide Assoc Stud genomic Predict 149–169

  • Henderson CR (1975) Best linear unbiased estimation and prediction under a selection model. Biometrics 423–447

  • Hirsch S, Oldroyd GED (2009) GRAS-domain transcription factors that regulate plant development. Plant Signal Behav 4:698–700

    Article  CAS  Google Scholar 

  • Hirschhorn JN, Daly MJ (2005) Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 6:95–108

    Article  CAS  Google Scholar 

  • Hisano H, Nandakumar R, Wang Z-Y (2009) Genetic modification of lignin biosynthesis for improved biofuel production. Vitr Cell Dev Biol 45:306–313

    Article  CAS  Google Scholar 

  • Hollertz R, Durán VL, Larsson PA, Wågberg L (2017) Chemically modified cellulose micro-and nanofibrils as paper-strength additives. Cellulose 24:3883–3899

    Article  CAS  Google Scholar 

  • Jaiswal V, Gahlaut V, Meher PK et al (2016) Genome wide single locus single trait, multi-locus and multi-trait association mapping for some important agronomic traits in common wheat (T aestivum L). PLoS One 11:e0159343

    Article  Google Scholar 

  • Jin K, Tang Y, Liu J et al (2021) Nanofibrillated cellulose as coating agent for food packaging paper. Int J Biol Macromol 168:331–338

    Article  CAS  Google Scholar 

  • Kainer D, Padovan A, Degenhardt J et al (2019) High marker density GWAS provides novel insights into the genomic architecture of terpene oil yield in Eucalyptus. New Phytol 223:1489–1504

    Article  CAS  Google Scholar 

  • Kassambara MA (2019) Package ‘ggcorrplot.’ R Package version 01

  • Kien ND, Quang TH, Jansson G et al (2009) Cellulose content as a selection trait in breeding for kraft pulp yield in Eucalyptus urophylla. Ann for Sci 66:1–8

    Article  Google Scholar 

  • Korte A, Farlow A (2013) The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9:29

    Article  CAS  Google Scholar 

  • Korte A, Vilhjálmsson BJ, Segura V et al (2012) A mixed-model approach for genome-wide association studies of correlated traits in structured populations. Nat Genet 44:1066–1071

    Article  CAS  Google Scholar 

  • Kusmec A, Schnable PS (2018) Farm CPU pp efficient large-scale genomewide association studies. Plant Direct 2:e00053

    Article  Google Scholar 

  • Lamara M, Raherison E, Lenz P et al (2016) Genetic architecture of wood properties based on association analysis and co-expression networks in white spruce. New Phytol 210(1):240–255

    Article  CAS  Google Scholar 

  • Laskin JD, Heck DE, Laskin DL (2002) The ribotoxic stress response as a potential mechanism for MAP kinase activation in xenobiotic toxicity. Toxicol Sci 69:289–291

    Article  CAS  Google Scholar 

  • Lavanya D, Kulkarni PK, Dixit M et al (2011) Sources of cellulose and their applications-a review. Int J Drug Formul Res 2:19–38

    Google Scholar 

  • Li X, Weng J, Chapple C (2008) Improvement of biomass through lignin modification. Plant J 54:569–581

    Article  CAS  Google Scholar 

  • Li S-M, Zheng H-X, Zhang X-S, Sui N (2021) Cytokinins as central regulators during plant growth and stress response. Plant Cell Rep 40:271–282

    Article  CAS  Google Scholar 

  • Lipka AE, Tian F, Wang Q et al (2012) GAPIT: genome association and prediction integrated tool. Bioinformatics 28:2397–2399

    Article  CAS  Google Scholar 

  • Liu H, Yan J (2019) Crop genome-wide association study: a harvest of biological relevance. Plant J 97:8–18

    Article  CAS  Google Scholar 

  • Liu X, Huang M, Fan B et al (2016) Iterative usage of fixed and random effect models for powerful and efficient genome-wide association studies. PLoS Genet 12:e1005767

    Article  Google Scholar 

  • MacMillan CP, Mansfield SD, Stachurski ZH et al (2010) Fasciclin-like arabinogalactan proteins: specialization for stem biomechanics and cell wall architecture in Arabidopsis and Eucalyptus. Plant J 62:689–703

    Article  CAS  Google Scholar 

  • Makouanzi G, Chaix G, Nourissier S, Vigneron P (2018) Genetic variability of growth and wood chemical properties in a clonal population of Eucalyptus urophylla× Eucalyptus grandis in the Congo. South for a J for Sci 80:151–158

    Article  Google Scholar 

  • Malan FS (1993) The wood properties and qualities of three South African-grown eucalypt hybrids. South African for J 167:35–44

    Google Scholar 

  • Malan FS, Gerischer GFR (1987) Wood property differences in South African grown Eucalyptus grandis trees of different growth stress intensity. Holzforschung 41:331–335

    Article  Google Scholar 

  • Mhoswa L, O’Neill MM, Mphahlele MM, et al (2020) A genome-wide association study For resistance to the insect pest Leptocybe invasa In Eucalyptus grandis reveals genomic regions and positional candidate defence genes. Plant Cell Physiol

  • Miao C, Yang J, Schnable JC (2019) Optimising the identification of causal variants across varying genetic architectures in crops. Plant Biotechnol J 17:893–905

    Article  Google Scholar 

  • Mizrachi E, Verbeke L, Christie N et al (2017) Network-based integration of systems genetics data reveals pathways associated with lignocellulosic biomass accumulation and processing. Proc Natl Acad Sci 114(5):1195–1200

    Article  CAS  Google Scholar 

  • Mphahlele MM, Isik F, Mostert-O’Neill MM et al (2020) Expected benefits of genomic selection for growth and wood quality traits in Eucalyptus grandis. Tree Genet Genomes 16:1–12

    Article  Google Scholar 

  • Müller BSF, Neves LG, de Almeida Filho JE et al (2017) Genomic prediction in contrast to a genome-wide association study in explaining heritable variation of complex growth traits in breeding populations of Eucalyptus. BMC Genomics 18:524

    Article  Google Scholar 

  • Müller BSF, de Almeida Filho JE, Lima BM et al (2019) Estimating additive and non-additive genetic variances and predicting genetic merits using genome-wide dense single nucleotide polymorphism markers. New Phytol 221:235–254

    Google Scholar 

  • Munoz F, Rodriguez LS (2014) breedR: statistical methods for forest genetic resources analysis. In: Trees for the future: plant material in a changing climate. pp 13-p

  • Myburg AA, Grattapaglia D, Tuskan GA et al (2014) The genome of Eucalyptus grandis. Nature 510:356–362

    Article  CAS  Google Scholar 

  • Oladzad A, Porch T, Rosas JC et al (2019) Single and multi-trait GWAS identify genetic factors associated with production traits in common bean under abiotic stress environments. G3 Genes. Genomes, Genet 9:1881–1892

    CAS  Google Scholar 

  • Osorio LF, White TL, Huber DA (2001) Age trends of heritabilities and genotype-by-environment interactions for growth traits and wood density from clonal trials of Eucalyptus grandis Hill ex Maiden. Silvae Genet 50:108–116

    Google Scholar 

  • Paaby AB, Rockman MV (2013) The many faces of pleiotropy. Trends Genet 29:66–73

    Article  CAS  Google Scholar 

  • Peterson RA (2021) Finding optimal normalizing transformations via bestNormalize. R J

  • Porter HF, O’Reilly PF (2017) Multivariate simulation framework reveals performance of multi-trait GWAS methods. Sci Rep 7:1–12

    Article  Google Scholar 

  • Rambolarimanana T, Ramamonjisoa L, Verhaegen D et al (2018) Performance of multi-trait genomic selection for Eucalyptus robusta breeding program. Tree Genet Genomes 14:1–13

    Article  Google Scholar 

  • Resende RT, Resende MDV, Silva FF et al (2017) Regional heritability mapping and genome-wide association identify loci for complex growth, wood and disease resistance traits in Eucalyptus. New Phytol 213:1287–1300

    Article  CAS  Google Scholar 

  • Rodriguez M, Scintu A, Posadinu CM et al (2020) GWAS based on RNA-Seq SNPs and high-throughput phenotyping combined with climatic data highlights the reservoir of valuable genetic diversity in regional tomato landraces. Genes (basel) 11:1387

    Article  CAS  Google Scholar 

  • Rubin EM (2008) Genomics of cellulosic biofuels. Nature 454:841–845

    Article  CAS  Google Scholar 

  • Schimleck LR, Kube PD, Raymond CA (2004) Genetic improvement of kraft pulp yield in Eucalyptus nitens using cellulose content determined by near infrared spectroscopy. Can J for Res 34:2363–2370

    Article  CAS  Google Scholar 

  • Schumacher FX (1933) Logarithmic expression of timber-tree volume. J Agric Res 47:719–734

    Google Scholar 

  • Shi Z, Zhang Y, Phillips GO, Yang G (2014) Utilization of bacterial cellulose in food. Food Hydrocoll 35:539–545

    Article  CAS  Google Scholar 

  • Silva-Junior OB, Faria DA, Grattapaglia D (2015) A flexible multi-species genome-wide 60K SNP chip developed from pooled resequencing of 240 Eucalyptus tree genomes across 12 species. New Phytol 206:1527–1540

    Article  CAS  Google Scholar 

  • Solovieff N, Cotsapas C, Lee PH et al (2013) Pleiotropy in complex traits: challenges and strategies. Nat Rev Genet 14:483–495

    Article  CAS  Google Scholar 

  • Stackpole DJ, Vaillancourt RE, de Aguigar M, Potts BM (2010) Age trends in genetic parameters for growth and wood density in Eucalyptus globulus. Tree Genet Genomes 6:179–193

    Article  Google Scholar 

  • Stackpole DJ, Vaillancourt RE, Alves A et al (2011) Genetic variation in the chemical components of Eucalyptus globulus wood. G3 Genes Genomes Genet 1:151–159

    Google Scholar 

  • Tan B, Ingvarsson PK (2018) Multivariate genome-wide association identify loci for complex growth traits by considering additive and over-dominance effects in hybrid Eucalyptus

  • Tang Y, Liu X, Wang J, et al (2016) GAPIT version 2: an enhanced integrated tool for genomic association and prediction. Plant Genome 9:plantgenome2015–11

  • Thavamanikumar S, McManus LJ, Ades PK, Bossinger G et al (2014) Association mapping for wood quality and growth traits in Eucalyptus globulus ssp globulus Labill identifies nine stable marker-trait associations for seven traits. Tree Genet Genomes 10(6):1661–1678

    Article  Google Scholar 

  • Thoen MPM, Davila Olivas NH, Kloth KJ et al (2017) Genetic architecture of plant stress resistance: multi-trait genome-wide association mapping. New Phytol 213:1346–1362

    Article  CAS  Google Scholar 

  • Valenzuela CE, Ballesta P, Ahmar S et al (2021) Haplotype-and SNP-based GWAS for growth and wood quality traits in Eucalyptus cladocalyx trees under arid conditions. Plants 10:148

    Article  CAS  Google Scholar 

  • VanRaden PM (2008) Efficient methods to compute genomic predictions. J Dairy Sci 91:4414–4423

    Article  CAS  Google Scholar 

  • Waples RS, Do CHI (2008) LDNE: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol Resour 8:753–756

    Article  Google Scholar 

  • Ward BP, Brown-Guedira G, Kolb FL et al (2019) Genome-wide association studies for yield-related traits in soft red winter wheat grown in Virginia. PLoS ONE 14:e0208217

    Article  CAS  Google Scholar 

  • Wickham H (2011) ggplot2. Wiley Interdiscip Rev Comput Stat 3:180–185

    Article  Google Scholar 

  • Yin L (2018) CMplot: circle manhattan plot. https://cran.r-project.org/package=CMplot

  • Yoshida GM, Yáñez JM (2021) Multi-trait GWAS using imputed high-density genotypes from whole-genome sequencing identifies genes associated with body traits in Nile tilapia. BMC Genomics 22:1–13

    Article  Google Scholar 

  • Zheng X, Levine D, Shen J et al (2012) A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 28:3326–3328

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge Suzano S.A. for providing the phenotypic and genotypic data.

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior — Brasil (CAPES) — Finance Code 001. The German Academic Exchange Service (DAAD) co-financed a short-term research grant (ref. no.: 91781916). Evandro V. Tambarussi is supported by a research productivity fellowship (grant number 304899/2019–4) and Post-Doctoral Scholarship (grant number 200727/2020–6) from “Conselho Nacional de Desenvolvimento Científico e Tecnológico” (CNPq).

Author information

Authors and Affiliations

Authors

Contributions

LFR conceptualization, methodology, software, formal analysis and writing — original draft. TRB conceptualization, resources, visualization, investigation and writing — review & editing. LS conceptualization, resources, visualization and funding acquisition. ICGS conceptualization, visualization, resources and methodology. AJS methodology and visualization. ACMF methodology, software and writing — original draft. SO methodology, conceptualization and visualization. JLS conceptualization and methodology. RMY methodology and visualization. HFC methodology, software, formal analysis and writing — original draft. NAM methodology, software, formal analysis and writing — original draft. MF methodology, software, formal analysis and writing — original draft. JJA methodology, software, formal analysis and writing — original draft. RFN methodology, software, formal analysis and writing — original draft. EVT writing — review and editing, visualization, supervision and project administration.

Corresponding author

Correspondence to Evandro Vagner Tambarussi.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by F. Isik

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rocha, L.F., Benatti, T.R., de Siqueira, L. et al. Quantitative trait loci related to growth and wood quality traits in Eucalyptus grandis W. Hill identified through single- and multi-trait genome-wide association studies. Tree Genetics & Genomes 18, 38 (2022). https://doi.org/10.1007/s11295-022-01570-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-022-01570-x

Keywords

Navigation