Skip to main content
Log in

Selection and validation of reference genes for accurate RT-qPCR gene expression normalization in cacao beans during fermentation

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

To date, little attention has been paid to the genotypic plasticity and influence of the fermentation process on gene functions and biological processes in cacao beans. The primary tools for such analyses are gene expression studies with reverse transcription quantitative PCR (RT-qPCR). While this is a well-appreciated technique, it is only reliable when considering the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines, which is unfortunately barely applied in plant sciences and non-existent in cacao-related studies. In this study, an appropriate from bean to RT-qPCR protocol was developed. In total, sixty-five candidate reference gene (RG) assays were validated. These assays were either adopted from literature (traditional “housekeeping” genes) or based on RNA-sequencing data (novel). After validation, three novel reference genes (SUGP1, NAP1, SGT1) were recommended for normalization of gene expression within fermented cacao beans. The suitability of the novel candidates surpassed the traditional housekeeping genes. In addition, these assays seemed largely unaffected by RNA integrity. This is the first study to establish a standardized RT-qPCR workflow on cacao beans during fermentation, facilitating future studies. We recommend similar MIQE-based approaches for future gene expression studies on other organisms for miscellaneous objectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Afoakwa EO, Paterson A, Fowler M, Ryan A (2008) Flavor formation and character in cocoa and chocolate: a critical review. Crit. Rev. Food Sci. an Nutr. 48:840–857

    CAS  Google Scholar 

  • Ali SS, Melnick RL, Crozier J, Phillips-Mora W, Strem MD, Shao J, Zhang D, Sicher R, Meinhardt L, Bailey BA (2014) Successful pod infections by Moniliophthora roreri result in differential Theobroma cacao gene expression depending on the clone’s level of tolerance. Mol. Plant Pathol. 15:698–710

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ali, S. S., Shao, J., Lary, D. J., Strem, M. D., Meinhardt, L. W., and Bailey, B. A. (2017). Phytophthora megakarya and P. palmivora, causal agents of black pod rot, induce similar plant defense responses late during infection of susceptible cacao pods. Front. Plant Sci. 8, 1–18.

  • Andersen CL, Jensen JL, Ørntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 64:5245–5250. https://doi.org/10.1158/0008-5472.CAN-04-0496

    Article  CAS  PubMed  Google Scholar 

  • Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. Available at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc [Accessed February 10, 2020].

  • Antonov J, Goldstein DR, Oberli A, Baltzer A, Pirotta M, Fleischmann A, Altermatt HJ, Jaggi R (2005) Reliable gene expression measurements from degraded RNA by quantitative real-time PCR depend on short amplicons and a proper normalization. Lab. Investig. 85:1040–1050

    CAS  PubMed  Google Scholar 

  • Aprotosoaie AC, Luca SV, Miron A (2016) Flavor chemistry of cocoa and cocoa products - an overview. Compr. Rev. Food Sci. Food Saf. 15:73–91

    CAS  PubMed  Google Scholar 

  • Argout X, Fouet O, Wincker P, Gramacho K, Legavre T, Sabau X et al (2008) Towards the understanding of the cocoa transcriptome : production and analysis of an exhaustive dataset of ESTs of Theobroma cacao L . generated from various tissues and under various conditions. BMC Genomics 9:1–19

    Google Scholar 

  • Bae H, Kim SH, Kim MS, Sicher RC, Lary D, Strem MD, Natarajan S, Bailey BA (2008) The drought response of Theobroma cacao (cacao) and the regulation of genes involved in polyamine biosynthesis by drought and other stresses. Plant Physiol. Biochem. 46:174–188

    CAS  PubMed  Google Scholar 

  • Bailey BA, Bae H, Strem MD, Roberts DP, Thomas SE, Crozier J, Samuels GJ, Choi IY, Holmes KA (2006) Fungal and plant gene expression during the colonization of cacao seedlings by endophytic isolates of four Trichoderma species. Planta 224:1449–1464

    CAS  PubMed  Google Scholar 

  • Bailey BA, Crozier J, Sicher RC, Strem MD, Melnick R, Carazzolle MF, Costa GGL, Pereira GAG, Zhang D, Maximova S, Guiltinan M, Meinhardt L (2013) Dynamic changes in pod and fungal physiology associated with the shift from biotrophy to necrotrophy during the infection of Theobroma cacao by Moniliophthora roreri. Physiol. Mol. Plant Pathol. 81:84–96

    CAS  Google Scholar 

  • Bailey BA, Melnick RL, Strem MD, Crozier J, Shao J, Sicher R, Phillips-Mora W, Ali SS, Zhang D, Meinhardt L (2014) Differential gene expression by Moniliophthora roreri while overcoming cacao tolerance in the field. Mol. Plant Pathol. 15:711–729

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bertolde FZ, Almeida AAF, Pirovani CP (2014) Analysis of gene expression and proteomic profiles of clonal genotypes from Theobroma cacao subjected to soil flooding. PLoS One 9:e108705

    PubMed  PubMed Central  Google Scholar 

  • Borges A, Tsai SM, Caldas DGG (2012) Validation of reference genes for RT-qPCR normalization in common bean during biotic and abiotic stresses. Plant Cell Rep. 31:827–838

    CAS  PubMed  Google Scholar 

  • Bray NL, Pimentel H, Melsted P, Pachter L (2016) Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34:525–527

    CAS  PubMed  Google Scholar 

  • Bustin SA, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55:611–622

    CAS  PubMed  Google Scholar 

  • Chaidamsari T, Samanhudi, Sugiarti H, Santoso D, Angenent GC, de Maagd RA (2006) Isolation and characterization of an AGAMOUS homologue from cocoa. Plant Sci. 170:968–975

    CAS  Google Scholar 

  • Coker JS, Davies E (2003) Selection of candidate housekeeping controls in tomato plants using EST data. Biotechniques 35:740–748

    CAS  PubMed  Google Scholar 

  • Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible W-R (2005) Genome-wide identification and testing of superior reference genes for transcript normalization. Genome Anal. 139:5–17

    CAS  Google Scholar 

  • De Almeida DSM, Do Amaral DOJ, Del-Bem LE, Dos Santos EB, Silva RJS, Gramacho KP et al (2017) Genome-wide identification and characterization of cacao WRKY transcription factors and analysis of their expression in response to witches’ broom disease. PLoS One 12:1–23

    Google Scholar 

  • De Keyser E, Desmet L, Van Bockstaele E, De Riek J (2013) How to perform RT-qPCR accurately in plant species ? A case study on flower colour gene expression in an azalea ( Rhododendron simsii hybrids ) mapping population. BMC Mol. Biol. 14:1–15

    Google Scholar 

  • De Spiegelaere W, Dern-Wieloch J, Weigel R, Schumacher V, Schorle H, Nettersheim D et al (2015) Reference gene validation for RT-qPCR, a note on different available software packages. PLoS One 10:1–13

    Google Scholar 

  • De Wever J, Tulkens D, Verwaeren J, Everaert H, Rottiers H, Dewettinck K et al (2020) A combined RNA preservation and extraction protocol for gene expression studies in cacao beans. Fontiers Plant Sci. 11:1–12

    Google Scholar 

  • Debode F, Marien A, Janssen É, Berben G, Bragard C (2017) The influence of amplicon length on real-time PCR results. Biotechnol. Agron. Soc. Environ. 21:3–11

    CAS  Google Scholar 

  • Dekkers BJW, Willems L, Bassel GW, Van Bolderen-Veldkamp RPM, Ligterink W, Hilhorst HWM et al (2012) Identification of reference genes for RT-qPCR expression analysis in arabidopsis and tomato seeds. Plant Cell Physiol. 53:28–37

    CAS  PubMed  Google Scholar 

  • Derveaux S, Vandesompele J, Hellemans J (2010) How to do successful gene expression analysis using real-time PCR. Methods 50:227–230

    CAS  PubMed  Google Scholar 

  • Die JV, Román B (2012) RNA quality assessment: a view from plant qPCR studies. J Exp Bot 63:6069–6077

    CAS  PubMed  Google Scholar 

  • Eisenberg E, Levanon EY (2013) Human housekeeping genes , revisited. Trends Genet. 29:569–574

    CAS  PubMed  Google Scholar 

  • EMBL-EBI (2020). Uniprot. Available at: https://www.uniprot.org/ [Accessed May 15, 2020].

  • Ensembl Plants release 45 Available at: http://plants.ensembl.org/index.html [Accessed February 25, 2020].

  • Fabre A-L, Colotte M, Luis A, Tuffet S, Bonnet J (2014) An efficient method for long-term room temperature storage of RNA. Eur. J. Hum. Genet. 22:379–385

    CAS  PubMed  Google Scholar 

  • Fister AS, Mejia LC, Zhang Y, Herre EA, Maximova SN, Guiltinan MJ (2016) Theobroma cacao L. pathogenesis-related gene tandem array members show diverse expression dynamics in response to pathogen colonization. BMC Genomics 17:1–16

    Google Scholar 

  • Fister AS, O’Neil ST, Shi Z, Zhang Y, Tyler BM, Guiltinan MJ, Maximova SN (2015) Two Theobroma cacao genotypes with contrasting pathogen tolerance show aberrant transcriptional and ROS responses after salicylic acid treatment. J. Exp. Bot. 66:6245–6258

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fleige S, Pfaffl MW (2006) RNA integrity and the effect on the real-time qRT-PCR performance. Mol. Aspects Med. 27:126–139

    CAS  PubMed  Google Scholar 

  • Gallego AM, Rojas LF, Parra O, Rodriguez HA, Mazo Rivas JC, Urrea AI et al (2018) Transcriptomic analyses of cacao cell suspensions in light and dark provide target genes for controlled flavonoid production. Sci. Rep. 8:1–14

    CAS  Google Scholar 

  • Gesteira AS, Micheli F, Carels N, Da Silva AC, Gramacho KP, Schuster I et al (2007) Comparative analysis of expressed genes from cacao meristems infected by Moniliophthora perniciosa. Ann. Bot. 100:129–140

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gopalam R, Rupwate SD, Tumaney AW (2017) Selection and validation of appropriate reference genes for quantitative real-time PCR analysis in Salvia hispanica. PLoS One 12:1–17

    Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I et al (2013) Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat. Biotechnol. 29:644–652

    Google Scholar 

  • Guénin S, Mauriat M, Pelloux J, Van Wuytswinkel O, Bellini C, Gutierrez L (2009) Normalization of qRT-PCR data: The necessity of adopting a systematic, experimental conditions-specific, validation of references. J. Exp. Bot. 60:487–493

    PubMed  Google Scholar 

  • Gutierrez L, Mauriat M, Guénin S, Pelloux J, Lefebvre JF, Louvet R et al (2008) The lack of a systematic validation of reference genes: a serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants. Plant Biotechnol. J. 6:609–618

    CAS  PubMed  Google Scholar 

  • Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, MacManes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, LeDuc RD, Friedman N, Regev A (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8:1494–1512

    CAS  Google Scholar 

  • Han, X., Lu, M., Chen, Y., Zhan, Z., Cui, Q., and Wang, Y. (2012). Selection of reliable reference genes for gene expression studies using real-time PCR in tung tree during seed development. PLoS One 7, e43084.

  • Hegmann E, Phillips-mora W, Lieberei R (2017) New resistant cocoa selections from Costa Rica have fine aroma potential. In: International Symposium on Cocoa Research (ISCR), pp 13–17

    Google Scholar 

  • Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 8:R19

    PubMed  PubMed Central  Google Scholar 

  • Hruz T, Wyss M, Docquier M, Pfaffl MW, Masanetz S, Borghi L et al (2011) RefGenes: identification of reliable and condition specific reference genes for RT-qPCR data normalization. BMC Genomics 12:1–14

    Google Scholar 

  • Imai T, Ubi BE, Saito T, Moriguchi T (2014) Evaluation of reference genes for accurate normalization of gene expression for real time-quantitative PCR in Pyrus pyrifolia using different tissue samples and seasonal conditions. PLoS One 9:1–11

    CAS  Google Scholar 

  • Jaiprakash MR, Pillai B, Venkatesh P, Subramanian N, Sinkar VP, Sdhale PP (2003) RNA isolation from high-phenolic freeze-dried tea ( Camellia sinensis ) leaves. Plant Mol. Biol. Report 21:465a-465 g

    Google Scholar 

  • Jaramillo ML, Ammar D, Quispe RL, Guzman F, Margis R, Nazari EM, Müller YMR (2017) Identification and evaluation of reference genes for expression studies by RT-qPCR during embryonic development of the emerging model organism, Macrobrachium olfersii. Gene 598:97–106

    CAS  PubMed  Google Scholar 

  • Jones PG, Allaway D, Gilmour DM, Harris C, Rankin D, Retzel ER et al (2002) Gene discovery and microarray analysis of cacao (Theobroma cacao L.) varieties. Planta 216:255–264

    CAS  PubMed  Google Scholar 

  • Kongor JE, Hinneh M, de Walle D, Van Afoakwa EO, Boeckx P, Dewettinck K (2016) Factors influencing quality variation in cocoa (Theobroma cacao) bean flavour profile - a review. Food Res. Int. 82:44–52

    CAS  Google Scholar 

  • Kozera B, Rapacz M (2013) Reference genes in real-time PCR. J. Appl. Genet. 54:391–406

    CAS  PubMed  PubMed Central  Google Scholar 

  • Law CW, Chen Y, Shi W, Smyth GK (2014) Voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15:1–17

    Google Scholar 

  • Leal GAJ, Albuquerque PSB, Figueira A (2007) Genes differentially expressed in Theobroma cacao associated with resistance to witches broom disease caused by Crinipellis perniciosa. Mol. Plant Pathol. 8:279–292

    CAS  PubMed  Google Scholar 

  • Legavre T, Ducamp M, Sabau X, Argout X, Fouet O, Dedieu F, Surujdeo-Maharaj S, Garcia D, Paulin D, Lanaud C (2015) Identification of Theobroma cacao genes differentially expressed during Phytophthora megakarya infection. Physiol. Mol. Plant Pathol. 92:1–13

    CAS  Google Scholar 

  • Li F, Wu B, Qin X, Yan L, Hao C, Tan L, Lai J (2014) Molecular cloning and expression analysis of the sucrose transporter gene family from Theobroma cacao L. Gene 546:336–341

    CAS  PubMed  Google Scholar 

  • Li F, Wu B, Yan L, Hao C, Qin X, Lai J et al (2019) Transcriptional profiling reveals differentially expressed genes involved in lipid biosynthesis during cacao seed development. Sci. Rep. 9:1–11

    Google Scholar 

  • Li X, Bai H, Wang X, Li L, Cao Y, Wei J, Liu Y, Liu L, Gong X, Wu L, Liu S, Liu G (2011) Identification and validation of rice reference proteins for western blotting. J. Exp. Bot. 62:4763–4772

    CAS  PubMed  PubMed Central  Google Scholar 

  • Litholdo CG, Leal GA, Albuquerque PSB, Figueira A (2015) Differential expression of jasmonate biosynthesis genes in cacao genotypes contrasting for resistance against Moniliophthora perniciosa. Plant Cell Rep. 34:1747–1759

    CAS  PubMed  Google Scholar 

  • Liu Y, Shi Z, Maximova S, Payne MJ, Guiltinan MJ (2013) Proanthocyanidin synthesis in Theobroma cacao: genes encoding anthocyanidin synthase, anthocyanidin reductase, and leucoanthocyanidin reductase. BMC Plant Biol. 13:1–19

    CAS  Google Scholar 

  • Lopes MA, Hora Junior BT, Dias CV, Santos GC, Gramacho KP, Cascardo JCM, Gesteira AS, Micheli F (2010) Expression analysis of transcription factors from the interaction between cacao and Moniliophthora perniciosa (Tricholomataceae). Genet. Mol. Res. 9:1279–1297

    CAS  PubMed  Google Scholar 

  • Lorenz TC (2012) Polymerase chain reaction: Basic protocol plus troubleshooting and optimization strategies. J. Vis. Exp. 1–15

  • Martins PK, Mafra V, De Souza WR, Ribeiro AP, Vinecky F, Basso MF et al (2016) Selection of reliable reference genes for RT-qPCR analysis during developmental stages and abiotic stress in Setaria viridis. Sci. Rep. 6:1–10

    Google Scholar 

  • Maximova SN, Florez S, Shen X, Niemenak N, Zhang Y, Curtis W et al (2014) Genome-wide analysis reveals divergent patterns of gene expression during zygotic and somatic embryo maturation of Theobroma cacao L ., the chocolate tree. BMC Plant Biol. 14:1–17

    Google Scholar 

  • Menezes SP, de Andrade Silva EM, Lima EM, de Sousa, A. angela O., Andrade, B. S., Lemos, L. S. L., et al. (2014) The pathogenesis-related protein PR-4b from Theobroma cacao presents RNase activity, Ca2+ and Mg2+ dependent-DNase activity and antifungal action on Moniliophthora perniciosa. BMC Plant Biol. 14:1–21

    Google Scholar 

  • Miao L, Qin X, Gao L, Li Q, Li S, He C et al (2019) Selection of reference genes for quantitative real-time PCR analysis in cucumber ( Cucumis sativus L.), pumpkin ( Cucurbita moschata Duch) and cucumber–pumpkin grafted plants. PeerJ 7:e6536

    PubMed  PubMed Central  Google Scholar 

  • Micheli F, Guiltina M, Gramacho KP, Wilkinson MJ, Figueira AV d O, Cascardo JC d M et al (2010) Functional Genomics of Cacao. Academic Press, Burlington

    Google Scholar 

  • Motamayor JC, Mockaitis K, Schmutz J, Haiminen N, Livingstone D, Cornejo O et al (2013) The genome sequence of the most widely cultivated cacao type and its use to identify candidate genes regulating pod color. Genome Biol. 14:r53

    PubMed  PubMed Central  Google Scholar 

  • National Center for Biotechnology Information Available at: https://blast.ncbi.nlm.nih.gov/Blast.cgi [Accessed January 10, 2020].

  • Nicot N, Hausman JF, Hoffmann L, Evers D (2005) Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J. Exp. Bot. 56:2907–2914

    CAS  PubMed  Google Scholar 

  • Nolan T, Hands RE, Bustin SA (2006) Quantification of mRNA using real-time RT-PCR. Nat. Protoc. 1:1559–1582

    CAS  PubMed  Google Scholar 

  • Pereira WJ, Bassinello PZ, Brondani C, Vianello RP (2017) An improved method for RNA extraction from common bean seeds and validation of reference genes for qPCR. Crop Breed. Appl. Biotechnol. 17:150–158

    CAS  Google Scholar 

  • Pérez-novo, C. A., Claeys, C., Speleman, F., Cauwenberge, P. Van, Bachert, C., and Vandesompele, J. (2005). Impact of RNA quality on reference gene expression stability. Biotechniques 39, 1–3.

  • Pfaffl MW, Tichopád A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes , differentially regulated target genes and sample integrity : BestKeeper – Excel-based tool using pair-wise correlations BestKeeeper Software - BioInformatics in kinetic PCR Important note - Computer configurati. Biotechnol. Lett. 26:509–515

    CAS  PubMed  Google Scholar 

  • Pinheiro TT, Litholdo CG Jr, Sereno ML, Leal GA Jr, Figueira A (2011) Establishing references for gene expression analyses by RT-qPCR in Theobroma cacao tissues. Genet. Mol. Res. 10:3291–3305

    CAS  PubMed  Google Scholar 

  • PrimerXL (2012) Available at: www.primerxl.org [Accessed February 28, 2016].

  • Radonić A, Thulke S, Mackay IM, Landt O, Siegert W, Nitsche A (2004) Guideline to reference gene selection for quantitative real-time PCR. Biochem. Biophys. Res. Commun. 313:856–862

    PubMed  Google Scholar 

  • Reid KE, Olsson N, Schlosser J, Peng F, Lund ST (2006) An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development. BMC Plant Biol. 6:1–11

    Google Scholar 

  • Rottiers H, Tzompa Sosa DA, De Winne A, Ruales J, De Clippeleer J, De Leersnyder I et al (2019) Dynamics of volatile compounds and flavor precursors during spontaneous fermentation of fine flavor Trinitario cocoa beans. Eur. Food Res. Technol. 245:1–12

    Google Scholar 

  • Santana JO, Freire L, de Sousa AO, Fontes Soares VL, Gramacho KP, Pirovani CP (2016) Characterization of the legumains encoded by the genome of Theobroma cacao L. Plant Physiol. Biochem. 98:162–170

    CAS  PubMed  Google Scholar 

  • Schwan RF, Wheals AE (2004) The microbiology of cocoa fermentation and its role in chocolate quality. Crit. Rev. Food Sci. Nutr. 44:205–221

    CAS  PubMed  Google Scholar 

  • Shi Z, Maximova SN, Liu Y, Verica J, Guiltinan MJ (2010) Functional analysis of the Theobroma cacao NPR1 gene in arabidopsis. BMC Plant Biol. 10:1–17

    Google Scholar 

  • Shi Z, Zhang Y, Maximova SN, Guiltinan MJ (2013) TcNPR3 from Theobroma cacao functions as a repressor of the pathogen defense response. BMC Plant Biol. 13:1–12

    Google Scholar 

  • Stephan L, Tilmes V, Hülskamp M (2019) Selection and validation of reference genes for quantitative real-time PCR in Arabis alpina. PLoS One 14:1–13

    Google Scholar 

  • Taylor S, Wakem M, Dijkman G, Alsarraj M, Nguyen M (2010) A practical approach to RT-qPCR-publishing data that conform to the MIQE guidelines. Methods 50:1–5

    Google Scholar 

  • Trognitz B, Cros E, Assemat S, Davrieux F, Forestier-Chiron N, Ayestas E, Kuant A, Scheldeman X, Hermann M (2013) Diversity of Cacao Trees in Waslala, Nicaragua: Associations between genotype spectra, product quality and yield potential. PLoS One 8:e54079

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tu Z, Hao Z, Zhong W, Li H (2019) Identification of suitable reference genes for RT-qPCR assays in Liriodendron chinense (Hemsl.) Sarg. Forests 10:1–16

    Google Scholar 

  • Turnbull, C.J. and Hadley, P. (2017). No Title.

    Google Scholar 

  • Udvardi MK, Czechowski T, Scheible W-R (2008) Eleven golden rules of quantitative RT-PCR. Plant Cell 20:1736–1737

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A et al (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3:1–12

    Google Scholar 

  • Verica JA, Maximova SN, Strem MD, Carlson JE, Bailey BA, Guiltinan MJ (2004) Isolation of ESTs from cacao (Theobroma cacao L.) leaves treated with inducers of the defense response. Plant Cell Rep. 23:404–413

    CAS  PubMed  Google Scholar 

  • Vermeulen J, De Preter K, Lefever S, Nuytens J, De Vloed F, Derveaux S et al (2011) Measurable impact of RNA quality on gene expression results from quantitative PCR. Nucleic Acids Res. 39:e63

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10:57–63

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yim AK-Y, Wong JW-H, Ku Y-S, Qin H, Chan T-F, Lam H-M (2015) Using RNA-seq data to evaluate reference genes suitable for gene expression studies in soybean. PLoS One 10:1–15

    CAS  Google Scholar 

  • Zhang Y, Maximova SN, Guiltinan MJ, Hudson K, Drews GN (2015) Characterization of a stearoyl-acyl carrier protein desaturase gene family from chocolate tree, Theobroma cacao L. Front. Plant Sci 6:1–12

    Google Scholar 

  • Zhou Z, Cong P, Tian Y, Zhu Y (2017) Using RNA-seq data to select reference genes for normalizing gene expression in apple roots. PLoS One 12:1–17

    Google Scholar 

  • Luypaert G, Witters J, Van Huylenbroeck J, De Clercq P, De Riek J, De Keyser E (2017) Induced expression of selected plant defence related genes in pot azalea, Rhododendron simsii hybrid. Euphytica 213:1–19

    Google Scholar 

Download references

Acknowledgments

We thank Jenny Ruales of Escuela Politécnica Nacional, Quito (EPN), and Cocoa Research Institute of Ghana (CRIG) for making available their facilities, man power, and expertise on cacao bean selection and fermentation of the Ecuadorian and Ghanaian samples, respectively. Many thanks, especially to Kent Kobby Agyemang for his help in selecting Ghanaian cacao varieties. We thank the University of Ghana for allowing us access to their analytical equipment and the Centre for Plant Medicine Research for the freeze dryer. Many beloved thanks to my friends and colleagues, John Kongor and Michael Hinneh, for the personal guidance in Ghana and their availability. Besides, many thanks to Wietse Vancampenhout, for the optimization of RT-qPCR workflow and the validation of literature-based reference genes during his master thesis. Last but not least, we thank the CMGG staff, especially Kimberly Verniers, Thalia Van Laethem, and Dries Rombout, for the practical and technical assistance on the Fragment Analyzer, sequencing, and geNorm analysis, respectively.

Funding

This work was financially supported by a doctoral fellowship from the Special Research Fund (BOF16/DOC/338) and by Global minds at Ghent university (13V02318T). Mobility was funded by the Commission scientific research (CWO) (BOFFF22014000501) at the Faculty of Bioscience Engineering and the Research Foundation Flanders (FWO) (V405218N).

Author information

Authors and Affiliations

Authors

Contributions

JDW and SLF created the experimental set-up. JDW wrote the manuscript together with TDC. JDW and SL conceived and designed the study as written in the main manuscript text. JDW and TDC equally contributed to the practical work conducted for this study. Both HE and HR offered their plant-associated expertise needed for this study, while SL and FC provided their expertise in the field of bioinformatics and next-generation sequencing, respectively. JV assisted with the geNorm software and provided a critical view on the statistical aspect of the paper. EOA, SYO, and SL have helped provide the cacao beans needed for this study, helped guide the fermentation trials and have provided access to their facilities, fermentation site, and analytical tools at CRIG and the University of Ghana, respectively. KM and KD supported and guided this study with their essential expertise, network, and resources in the field of cacao. All authors were involved in the revision of the draft manuscript and have agreed to the final content.

Corresponding author

Correspondence to Jocelyn De Wever.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data archiving statement

All datasets, with exception of the raw RNA-sequencing data, analyzed within this study are included in the manuscript and the electronic supplementary material. The raw RNA-sequencing data is still under study and therefore not made available yet.

Additional information

Communicated by A. De La Torre

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Wever, J., De Coninck, T., Everaert, H. et al. Selection and validation of reference genes for accurate RT-qPCR gene expression normalization in cacao beans during fermentation. Tree Genetics & Genomes 17, 7 (2021). https://doi.org/10.1007/s11295-021-01490-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-021-01490-2

Keywords

Navigation