Skip to main content

Advances in genomics of cashew tree: molecular tools and strategies for accelerated breeding

Abstract

Cashew is the second most important edible tree nut crop after almonds. It is cultivated in more than 30 countries due to economic and nutritional importance. The global demand for cashew is increasing rapidly every year. Like in other perennial tree species, genetic improvement of cashew by traditional breeding is slow and unpredictable due to the long juvenile phase, high degree of heterozygosity, lack of juvenile-mature traits correlations and large size of the mature plant. Additionally, most of the yield and agronomic traits are genetically complex which complicate its breeding. Recently, the next-generation sequencing (NGS) and high-throughput genotyping technologies have expedited the pace of development of genomic tools and resources for genomics-orphan crops like cashew. The genomics advancements allow designing novel molecular breeding technologies with the potential for enhancing genetic gains and accelerating crop improvement, which is of utmost importance in the breeding of long juvenile species like cashew. In this review article, we describe the breeding objectives, advances in construction of linkage map, QTL dissection and development of genomic sequence resources in cashew. It is followed by a description of designing different genomics-based tools and strategies for accelerating the cashew breeding to quickly develop superior cultivars.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Adeigbe OO, Olasupo FO, Adewale BD, Muyiwa AA (2015) A review on cashew research and production in Nigeria in the last four decades. Sci Res Essays 10(5):196–209

    Google Scholar 

  • Adejumo TO (2005) Crop protection strategies for major diseases of cocoa, coffee and cashew in Nigeria. Afr J Biotechnol 4:143–150

    CAS  Google Scholar 

  • Adiga JD, Muralidhara BM, Preethi P, Savadi S (2019) Phenological growth stages of the cashew tree (Anacardium occidentale L.) according to the extended BBCH scale. Ann Appl Biol 175(2):246–252

    CAS  Google Scholar 

  • Aliyu OM (2012) Genetic diversity of Nigerian cashew germplasms. In: Caliskan M (Ed) Genetic diversity in plants. InTech Open Access Publisher, Rijeka, pp 128–138

  • Aliyu OM (2014) Analysis of absolute nuclear DNA content reveals a small genome and intra-specific variation in cashew (Anacardium occidentale L.), Anacardiaceae. Silvae Genet 63(1–6):285–292

    Google Scholar 

  • Aliyu OM, Awopetu JA (2007a) Chromosome studies in cashew (Anacardium occidentale L.). Afr J Biotechnol 6(2):131–136

    CAS  Google Scholar 

  • Aliyu OM, Awopetu JA (2007b) Assessment of genetic diversity in three populations of cashew (Anacardium occidentale L.) using protein-isoenzyme-electrophoretic analysis. Genet Resour Crop Evol 54(7):1489–1497

    CAS  Google Scholar 

  • Altpeter F, Springer NM, Bartley LE, Blechl AE, Brutnell TP, Citovsky V et al (2016) Advancing crop transformation in the era of genome editing. Plant Cell 28(7):1510–1520

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ampatzidis Y, Partel V (2019) UAV-based high throughput phenotyping in citrus utilizing multispectral imaging and artificial intelligence. Remote Sens 11(4):410

    Google Scholar 

  • Archak S, Gaikwad AB, Gautam D, Rao EV, Swamy KR, Karihaloo JL (2003a) Comparative assessment of DNA fingerprinting techniques (RAPD, ISSR and AFLP) for genetic analysis of cashew (Anacardium occidentale L.) accessions of India. Genome 46(3):362–369

    CAS  PubMed  Google Scholar 

  • Archak S, Gaikwad AB, Gautam D, Rao EB, Swamy KRM, Karihaloo JL (2003b) DNA fingerprinting of Indian cashew (Anacardium occidentale L.) varieties using RAPD and ISSR techniques. Euphytica 130(3):397–404

    CAS  Google Scholar 

  • Archak S, Gaikwad AB, Swamy KRM, Karihaloo JL (2009) Genetic analysis and historical perspective of cashew (Anacardium occidentale L.) introduction into India. Genome 52(3):222–230

    CAS  PubMed  Google Scholar 

  • Ascenso JC (1986) Potential of the cashew crop-2. Agric Int 38:368–371

    Google Scholar 

  • Atkinson C, Else M (2001) Understanding how rootstocks dwarf fruit trees. Compact Fruit Tree 34:46–49

    Google Scholar 

  • Benbrook CM (2012) Impacts of genetically engineered crops on pesticide use in the US--the first sixteen years. Environ Sci Eur 24:24 (2012). https://doi.org/10.1186/2190-4715-24-24

    CAS  Article  Google Scholar 

  • Berry AD, Sargent SA (2011) Cashew apple and nut (Anacardium occidentale L.). In: Yahia EM. (Ed) postharvest biology and technology of tropical and subtropical fruits (pp. 414-423e). Woodhead Publishing Limited, Cambridge. https://doi.org/10.1533/9780857092762

  • Bewg WP, Ci D, Tsai C-J (2018) Genome editing in trees: from multiple repair pathways to long-term stability. Front Plant Sci 9:1732

    PubMed  PubMed Central  Google Scholar 

  • Bhat MG, Nagaraja KV, Rupa TR (2010) Cashew research in India. J Hortic Sci 5(1):1–16

    Google Scholar 

  • Bolar JP, Norelli JL, Harman GE, Brown SK, Aldwinckle HS (2001) Synergistic activity of endochitinase and exochitinase from Trichoderma atroviride (T. harzianum) against the pathogenic fungus (Venturia inaequalis) in transgenic apple plants. Transgenic Res 10(6):533–543

    CAS  PubMed  Google Scholar 

  • Borges ANC, Lopes ACA, Britto FB, Vasconcelos LFL, Lima PSC (2018) Genetic diversity in a cajuí (Anacardium spp.) germplasm bank as determined by ISSR markers. Genet Mol Res 17:1–14. https://doi.org/10.4238/gmr18212

    Article  Google Scholar 

  • Bouchabke-Coussa O, Obellianne M, Linderme D, Montes E, Maia-Grondard A, Vilaine F, Pannetier C (2013) WUSCHEL overexpression promotes somatic embryogenesis and induces organogenesis in cotton (Gossypium hirsutum L.) tissues cultured in vitro. Plant Cell Rep 32:675–686

    CAS  PubMed  Google Scholar 

  • Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang L et al (2002) Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14(8):1737–1749

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bradley D, Harkey MA, Kim MK, Biever KD, Bauer LS (1995) The insecticidal CryIB crystal protein of Bacillus thuringiensis ssp. thuringiensis has dual specificity to Coleopteran and Lepidopteran larvae. J Invertebr Pathol 65:162–173

    CAS  PubMed  Google Scholar 

  • Bradtke B (2007) Cashew growing: how to grow cashew trees, nuts and apples. Tropical Permaculture. See : http://www.tropicalpermaculture.com/growing-cashews.html

  • Buso G, Lamas N, Cavalcanti JJ, Ferreira MA (2011) Development, characterization and use of microsatellite markers for genetic analysis of Cashew tree (Anacardium occidentale). BMC Proc 5(7):157

  • Cabrera-Bosquet L, Crossa J, von Zitzewitz J, Serret MD, Luis Araus J (2012) High-throughput phenotyping and genomic selection: the frontiers of crop breeding convergeF. J Integr Plant Biol 54(5):312–320

    PubMed  Google Scholar 

  • Cardoso JE, Santos AA, Rossetti AG, Vidal JC (2004) Relationship between incidence and severity of cashew gummosis in semiarid north-eastern Brazil. Plant Pathol 53(3):363–367

    Google Scholar 

  • Castro ACR, Bordallo PN, Cavacanti JJV, Barros LM (2010) Brazilian cashew germplasm bank. In: XXVIII International horticultural congress on science and horticulture for people (IHC2010): III international symposium on 918, pp 857–861

    Google Scholar 

  • Castro ACR, Bordallo PN, Cavacanti JJV, Barros LM (2011) Brazilian cashew germplasm bank. Acta Hortic 918(918):857–861

    Google Scholar 

  • Cavalcanti JJ, Wilkinson MJ (2007) The first genetic maps of cashew (Anacardium occidentale L.). Euphytica 157(1–2):131–143

    CAS  Google Scholar 

  • Cavalcanti JJV, Santos FHCD, Silva FPD, Pinheiro CR (2012) QTL detection of yield-related traits of cashew. Crop Breed Appl Biotechnol 12(1):60–66

    Google Scholar 

  • Chandrasekhar M, Sethi K, Tripathy P, Mukherjee SK, Panda PK, Roy A (2018) Performance of released cashew (Anacardium occidentale L.) varieties under hot and humid climatic zone of Odisha. Indian J Agri Res 52(2):152–156

  • Chavan SP, Raut UA (2013) Genetic diversity based on morphological and molecular markers in cashew (Anacardium occidentale L.) genotypes. Vegetos 26(2):255–263

  • Chen L, Huang L, Min D, Phillips A, Wang S, Madgwick PJ et al (2012) Development and characterization of a new TILLING population of common bread wheat (Triticum aestivum L.). PLoS One 7(7):e41570

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chipojola FM, Mwase WF, Kwapata MB, Bokosi JM, Njoloma JP, Maliro MF (2009) Morphological characterization of cashew (Anacardium occidentale L.) in four populations in Malawi. Afr J Biotechnol 8(20):5173–5181

    Google Scholar 

  • Chougule NP, Bonning BC (2012) Toxins for transgenic resistance to hemipteran pests. Toxins 4(6):405–429

    CAS  PubMed  PubMed Central  Google Scholar 

  • Conner AJ, Barrell PJ, Baldwin SJ, Lokerse AS, Cooper PA, Erasmuson AK, Nap JP, Jacobs JM (2007) Intragenic vectors for gene transfer without foreign DNA. Euphytica 154(3):341–353

    CAS  Google Scholar 

  • Cota LG, Moreira PA, Menezes EV, Gomes AS, Ericsson ARO, Oliveira DA, Melo AF Jr (2012) Transferability and characterization of simple sequence repeat markers from Anacardium occidentale to A. humile (Anacardiaceae). Genet Mol Res 11(4):4609–4616

    CAS  PubMed  Google Scholar 

  • Coupel-Ledru A, Pallas B, Delalande M, Boudon F, Carrié E, Martinez S, Regnard JL, Costes E (2019) Multi-scale high-throughput phenotyping of apple architectural and functional traits in orchard reveals genotypic variability under contrasted watering regimes. Hortic Res 6(1):52

    PubMed  PubMed Central  Google Scholar 

  • Cova V, Lasserre-Zuber P, Piazza S, Cestaro A, Velasco R, Durel CE, Malnoy M (2015) High-resolution genetic and physical map of the Rvi1 (Vg) apple scab resistance locus. Mol Breed 35(1):16

    Google Scholar 

  • Cros D, Denis M, Sánchez L, Cochard B, Flori A, Durand-Gasselin T et al (2015) Genomic selection prediction accuracy in a perennial crop: case study of oil palm (Elaeis guineensis Jacq.). Theor Appl Genet 128(3):397–410

    PubMed  Google Scholar 

  • Croxford AE, Robson M, Wilkinson MJ (2006) Characterization and PCR multiplexing of polymorphic microsatellite loci in cashew (Anacardium occidentale L.) and their cross-species utilization. Mol Ecol Notes 6(1):249–251

    CAS  Google Scholar 

  • Daccord N, Celton JM, Linsmith G, Becker C, Choisne N, Schijlen E et al (2017) High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nat Genet 49(7):1099–1106

    CAS  PubMed  Google Scholar 

  • Das I, Arora A (2017) Post-harvest processing technology for cashew apple–a review. J Food Eng 194:87–98

    CAS  Google Scholar 

  • Dasmohapatra R, Rath S, Pradhan B, Rout GR (2014) Molecular and agromorphological assessment of cashew (Anacardium occidentale L.) genotypes of India. J Appl Hortic 16:215–221

    Google Scholar 

  • De Castro P (1994) Summary of the study. In: Delogu AM and Haeuster G (Eds.)The World Cashew Economy. Nomisma, L’Inchiostroblu, Bologna, Italy, pp 11–12

  • Denis M, Bouvet JM (2013) Efficiency of genomic selection with models including dominance effect in the context of Eucalyptus breeding. Tree Genet Genomes 9(1):37–51

    Google Scholar 

  • Desai AR, Singh SP, Faleiro JR, Thangam M, Priya DS, Safeena SA, Singh NP (2010) Techniques and practices for cashew production. Technical bulletin 21. ICAR-Research Complex for Goa, Goa, India, p 30

    Google Scholar 

  • Devasahayam S, Nair CR (1986) The tea mosquito bug Helopeltis antonii Signoret on cashew in India. J Plant Crop 14(1):1–10

    Google Scholar 

  • Dhanaraj AL, Rao EB, Swamy KRM, Bhat MG, Prasad DT, Sondur SN (2002) Using RAPDs to assess the diversity in Indian cashew (Anacardium occidentale L.) germplasm. J Hortic Sci Biotechnol 77(1):41–47

    CAS  Google Scholar 

  • Dodo HW, Konan KN, Chen FC, Egnin M, Viquez OM (2008) Alleviating peanut allergy using genetic engineering: the silencing of the immunodominant allergen Ara h 2 leads to its significant reduction and a decrease in peanut allergenicity. Plant Biotechnol J 6(2):135–145

    CAS  PubMed  Google Scholar 

  • dos Santos FHC, Cavalcanti JJV, da Silva FP (2010) Detection of quantitative trait loci for physical traits of cashew apple. Crop Breed Appl Biotechnol 10(2)

  • dos Santos FHCD, Cavalcanti JJV, Silva FPD (2011) QTL detection for physicochemical characteristics of cashew apple. Crop Breed Appl Biotechnol 11(1):17–26

    Google Scholar 

  • dos Santos JO, Mayo SJ, Bittencourt CB, de Andrade IM (2019) Genetic diversity in wild populations of the restinga ecotype of the cashew (Anacardium occidentale) in coastal Piaui, Brazil. Plant Syst Evol 305(10):913–924

    Google Scholar 

  • van Eijnatten CLM (1992) Anacardium occidentale L. In: Verheij EWM, Coronel RE (eds) Plant resources of South-East Asia No. 2: edible fruits and nuts. Pudoc-DLO, Wageningen, the Netherlands, pp 60–64

    Google Scholar 

  • Faize M, Malnoy M, Dupuis F, Chevalier M, Parisi L, Chevreau E (2003) Chitinases of Trichoderma atroviride induce scab resistance and some metabolic changes in two cultivars of apple. Phytopathology 93:1496–1150

    CAS  PubMed  Google Scholar 

  • Fan D, Liu T, Li C, Jiao B, Li S, Hou Y, Luo K (2015) Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation. Sci Rep 5:12217

    CAS  PubMed  PubMed Central  Google Scholar 

  • FAOSTAT (2016) Food and Agriculture Organization of the United Nations (FAO). Rome, Italy

  • Flachowsky H, Peil A, Sopanen T, Elo A, Hanke V (2007) Overexpression of BpMADS4 from silver birch (Betula pendula Roth.) induces early-flowering in apple (Malus× domestica Borkh.). Plant Breed 126(2):137–145

    CAS  Google Scholar 

  • Flachowsky H, Le Roux PM, Peil A, Patocchi A, Richter K, Hanke MV (2011) Application of a high-speed breeding technology to apple (Malus× domestica) based on transgenic early flowering plants and marker-assisted selection. New Phytol 192(2):364–377

    CAS  PubMed  Google Scholar 

  • Frankel, O. H., & Brown, A. H. D. (1984). Current plant genetic resources--a critical appraisal. In Genetics: new frontiers: proceedings of the XV International Congress of Genetics/editors, VL Chopra...[et al.]. New Delhi: Oxford & IBH Publishing Co.,

  • Freire FCO, Cardoso JE, Dos Santos AA, Viana FMP (2002) Diseases of cashew nut plants (Anacardium occidentale L.) in Brazil. Crop Prot 21(6):489–494

    Google Scholar 

  • Freitas BM, Paxton RJ (1996) The role of wind and insects in cashew (Anacardium occidentale) pollination in NE Brazil. J Agric Sci 126(3):319–326

    Google Scholar 

  • Gajbhiye RC, Pawar SN, Salvi SP, Zote VK, Haldavanekar PC (2018) Performance of different cashew (Anacardium occidentale L.) genotypes under Konkan region of Maharashtra. Int J Chem Stud 6:1939–1942

    Google Scholar 

  • Gambino G, Gribaudo I (2012) Genetic transformation of fruit trees: current status and remaining challenges. Transgenic Res 21(6):1163–1181

    CAS  PubMed  Google Scholar 

  • Gatehouse AMR, Ferry N, Edwards MG, Bell HA (2011) Insect-resistant biotech crops and their impacts on beneficial arthropods. Phil Trans R Soc B 366(1569):1438–1452

    CAS  PubMed  PubMed Central  Google Scholar 

  • Génissel A, Leplé JC, Millet N, Augustin S, Jouanin L, Pilate G (2003) High tolerance against Chrysomela tremulae of transgenic poplar plants expressing a synthetic cry3Aa gene from Bacillus thuringiensis ssp tenebrionis. Mol Breed 11:103–110

    Google Scholar 

  • Gilchrist EJ, Haughn GW, Ying CC, Otto SP, Zhuang JUN, Cheung D et al (2006) Use of Ecotilling as an efficient SNP discovery tool to survey genetic variation in wild populations of Populus trichocarpa. Mol Ecol 15(5):1367–1378

    CAS  PubMed  Google Scholar 

  • Hallingbäck HR, Fogelqvist J, Powers SJ, Turrion-Gomez J, Rossiter R, Amey J et al (2016) Association mapping in Salix viminalis L. (Salicaceae)–identification of candidate genes associated with growth and phenology. GCB Bioenergy 8(3):670–685

    PubMed  Google Scholar 

  • Hanumanthappa M, Sanganagoud PR, Kamath KVS, Vinod VR, Dhananjaya B, Shankar M (2014) Performance of different cashew (Anacardium occidentale L.) cultivars in coastal Karnataka. Environ Ecol 32(3):891–895

    Google Scholar 

  • Harrison N, Harrison RJ, Barber-Perez N, Cascant-Lopez E, Cobo-Medina M, Lipska M, Conde-Ruíz R, Brain P, Gregory PJ, Fernández-Fernández F (2016) A new three-locus model for rootstock-induced dwarfing in apple revealed by genetic mapping of root bark percentage. J Exp Bot 67(6):1871–1881

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hawerroth MC, Bordallo PDN, Oliveira LCP, Vale EH, Neto V, das Chagas F, Melo DS (2019) Genetic variability among cashew hybrids and prediction of superior combinations based on agronomic performance. Pesq Agrop Brasileira 54:e00725

    Google Scholar 

  • Hegde S, D'Souza W, D'Souza L, Ghosh SB, Kiran Nivas S, Kumar Menon V (2005) Agrobacterium-mediated transformation of Anacardium occidentale L.(cashew) using GFP marker system. In: International symposium on biotechnology of temperate fruit crops and tropical species 738, pp 467–471

    Google Scholar 

  • Hemshekhar M, Sebastin Santhosh M, Kemparaju K, Girish KS (2012) Emerging roles of anacardic acid and its derivatives: a pharmacological overview. Basic Clin Pharmacol Toxicol 110(2):122–132

    CAS  PubMed  Google Scholar 

  • Hu H, Scheben A, Edwards D (2018) Advances in integrating genomics and bioinformatics in the plant breeding pipeline. Agriculture 8(6):75

    Google Scholar 

  • Ibitoye DO, Akin-Idowu PE (2010) Marker-assisted-selection (MAS): a fast track to increase genetic gain in horticultural crop breeding. Afr J Biotechnol 9(52):8889–8895

    Google Scholar 

  • ICAR-DCR Annual Report (2017–18) ICAR-Directorate of Cashew Research, Puttur, Karnataka

  • INC 2017. Nuts and dried fruits statistical book 2017/2018. International nut and dried fruit council. Carrer de la Fruita Seca, 4 - Polígon Tecnoparc - 43204 REUS Spain, pp 22-24

  • ISAAA (2017) Global status of commercialized biotech/GM crops in 2017: biotech crop adoption surges as economic benefits accumulate in 22 years. ISAAA Brief No. 53. ISAAA, Ithaca, NY

    Google Scholar 

  • Jacob P, Avni A, Bendahmane A (2018) Translational research: exploring and creating genetic diversity. Trends Plant Sci 23(1):42–52

    CAS  PubMed  Google Scholar 

  • Javaid S, Amin I, Jander G, Mukhtar Z, Saeed NA, Mansoor S (2016) A transgenic approach to control hemipteran insects by expressing insecticidal genes under phloem-specific promoters. Sci Rep 6:34706

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jena RC, Samal KC, Pal A, Das BK, Chand PK (2016) Genetic diversity among some promising Indian local selections and hybrids of cashew nut based on morphometric and molecular markers. Int J Fruit Sci 16(1):69–93

    Google Scholar 

  • Jia H, Zhang Y, Orbović V, Xu J, White FF, Jones JB, Wang N (2017) Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker. Plant Biotechnol J 15:817–823

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jonas E, de Koning DJ (2016) Goals and hurdles for a successful implementation of genomic selection in breeding programme for selected annual and perennial crops. Biotechnol Genet Eng Rev 32(1–2):18–42

    PubMed  Google Scholar 

  • Kahlmann K, Kohn M (2018) USDA/FAS Food for Progress LIFFT-Cashew. SeGaBi Cashew Value Chain Study. pp. 1-163. https://www.climatefinancelab.org/wp-content/uploads/2018/12/SeGaBi-study_final_18.03.02_pub.pdf

  • Kaya HB, Cetin O, Kaya HS, Sahin M, Sefer F, Tanyolac B (2016) Association mapping in Turkish olive cultivars revealed significant markers related to some important agronomic traits. Biochem Genet 54(4):506–533

    CAS  PubMed  Google Scholar 

  • Khan MA, Han Y, Zhao YF, Korban SS (2012) A high-throughput apple SNP genotyping platform using the GoldenGate™ assay. Gene 494(2):196–201

    CAS  PubMed  Google Scholar 

  • Khlestkina EK, Salina EA (2006) SNP markers: methods of analysis, ways of development, and comparison on an example of common wheat. Russ J Genet 42(6):585–594

    CAS  Google Scholar 

  • Kouakou CK, N’da Adopo A, Djaha AJB, N’da DP, N’da HA, Bi IAZ et al (2020) Genetic characterization of promising high-yielding cashew (Anacardium occidentale L.) cultivars from Côte d'Ivoire. Biotechnol Agron Soc Environ 24(1):46–58

    Google Scholar 

  • Krath BN, Eriksen FD, Pedersen BH, Gilissen LJ, Van de Weg WE, Dragsted LO (2009) Development of hypo-allergenic apples: silencing of the major allergen Mal d 1 gene in ‘Elstar’apple and the effect of grafting. J Hortic Sci Biotechnol 84(6):52–57

    Google Scholar 

  • Kubota C, McClure MA, Kokalis-Burelle N, Bausher MG, Rosskopf EN (2008) Vegetable grafting: history, use, and current technology status in North America. HortScience 43(6):1664–1669

    Google Scholar 

  • Kwong QB, Ong AL, Teh CK, Chew FT, Tammi M, Mayes S et al (2017) Genomic selection in commercial perennial crops: applicability and improvement in oil palm (Elaeis guineensis Jacq.). Sci Rep 7(1):2872

    PubMed  PubMed Central  Google Scholar 

  • Limera C, Sabbadini S, Sweet JB, Mezzetti B (2017) New biotechnological tools for the genetic improvement of major woody fruit species. Front Plant Sci 8:1418

    PubMed  PubMed Central  Google Scholar 

  • Liu C, Guo T, Wang N, Wang Q, Xue Y, Zhan M, Guan Q, Ma F (2019) Overexpression of MhYTP2 enhances apple water-use efficiency by activating ABA and ethylene signaling. Environ Exp Bot 157:260–268

    CAS  Google Scholar 

  • Lubi MC, Thachil ET (2000) Cashew nut shell liquid (CNSL)-a versatile monomer for polymer synthesis. Des Monomers Polym 3:123–153

    CAS  Google Scholar 

  • Maduwanthi SDT, Marapana RAUJ (2019) Induced ripening agents and their effect on fruit quality of banana. Int J Food Sci 2019:2520179

    CAS  PubMed  PubMed Central  Google Scholar 

  • Malhotra SK, Hubballi VN, Nayak MG (2017) Cashew: production, processing and utilization of by-products. Directorate of Cashewnut and Cocoa Development, Cochin, Kerala, India

    Google Scholar 

  • Marroni F, Pinosio S, Di Centa E, Jurman I, Boerjan W, Felice N et al (2011) Large-scale detection of rare variants via pooled multiplexed next-generation sequencing: towards next-generation Ecotilling. Plant J 67(4):736–745

    CAS  PubMed  Google Scholar 

  • Martín-Pizarro C, Triviño JC, Posé D (2018) Functional analysis of the TM6 MADS-box gene in the octoploid strawberry by CRISPR/Cas9-directed mutagenesis. J Exp Bot 70(3):885–895

    PubMed Central  Google Scholar 

  • Matas AJ, Gapper NE, Chung MY, Giovannoni JJ, Rose JK (2009) Biology and genetic engineering of fruit maturation for enhanced quality and shelf-life. Curr Opin Biotechnol 20(2):197–203

    CAS  PubMed  Google Scholar 

  • Mendes C, Costa J, Vicente AA, Oliveira MBP, Mafra I (2019) Cashew nut allergy: clinical relevance and allergen characterisation. Clin Rev Allergy Immunol 57(1):1–22

  • Meng X, Yu H, Zhang Y, Zhuang F, Song X, Gao S, Gao C, Li J (2017) Construction of a genome-wide mutant library in rice using CRISPR/Cas9. Mol Plant 10(9):1238–1241

    CAS  PubMed  Google Scholar 

  • Mitchell, J. D., & Mori, S. A. (1987). The cashew and its relatives. Anacardium: Anacardiaceae, Mem. New York. Bot Gard, 42, 1–76

  • Mneney E, Mantell S, Bennett M (2001) Use of random amplified polymorphic DNA (RAPD) markers to reveal genetic diversity within and between populations of cashew (Anacardium occidentale L.). J Hortic Sci Biotechnol 76(4):375–383

    CAS  Google Scholar 

  • Mohan M, Nair S, Bhagwat A, Krishna TG, Yano M, Bhatia CR, Sasaki T (1997) Genome mapping, molecular markers and marker-assisted selection in crop plants. Mol Breed 3(2):87–103

    CAS  Google Scholar 

  • Mohana GS, Nayak MG (2018) Development of the core collection through advanced maximization strategy with heuristic approach in cashew (Anacardium occidentale L.). Plant Genet Resour 16(4):367–377

  • Mzena GP, Kusolwa P, Rwegasira G, Yao N (2017) Mapping of quantitative trait loci (QTL) related to yield, nut quality and plant size of cashew (Anacardium occidentale L). Int J Agric Environ Biores 2:307–323

    Google Scholar 

  • Mzena GP, Kusolwa P, Rwegasira GR, Yao N (2018) Discovery of novel single nucleotide polymorphic (SNP) markers for genetic mapping of cashew (Anacardium occidentale. L). Int J Agric Environ Biores 3:186–196

    Google Scholar 

  • Nadgauda R, Jayasankar S, Litz RE (2005) Anacardium occidentale Cashew. In: Litz RE (ed) Biotechnology of fruit and nut crops. CABI OxfordshireOX10 8DE, pp 30–39

  • Nandi BK (1998) Cashew Nut Nutritional Aspects. In: Integrated production practices of cashew in Asia. In papademetroiu, M.K. and Herath, E.M. (eds.). Food and agriculture organization of the United Nations Regional Office for Asia and the Pacific: Bangkok, Thailand (FAO/RAP Publication: 1998/12). http://www.fao.org/docrep/005/ac451e/ac451e0b.htm#fn11

  • Nirala NK, Das DK, Srivastava PS, Sopory SK, Upadhyaya KC (2010) Expression of a rice chitinase gene enhances antifungal potential in transgenic grapevine (Vitis vinifera L.). Vitis 49:181–187

    CAS  Google Scholar 

  • Nishitani C, Hirai N, Komori S, Wada M, Okada K, Osakabe K, Yamamoto T, Osakabe Y (2016) Efficient genome editing in apple using a CRISPR/Cas9 system. Sci Rep 6:31481

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohler JG (1967) Cashew growing. Trop Abstracts (The Netherlands) 22(1):1–9

    Google Scholar 

  • Ohler JG (1979) Cashew. Koninklijk Instituut voor de Tropen, Amsterdam

    Google Scholar 

  • Oladosu Y, Rafii MY, Abdullah N, Hussin G, Ramli A, Rahim HA, Miah G, Usman M (2016) Principle and application of plant mutagenesis in crop improvement: a review. Biotechnol Biotechnol Equip 30(1):1–16

    CAS  Google Scholar 

  • Oliveira, V. H. D. (2008). Cashew crop. Rev Bras Frutic, 30(1), 0–0

  • Orwa C, Mutua A, Kindt R, Jamnadass R, Simons A (2009) Agroforestry database: a tree reference and selection guide version 4.0. Available at: http://www.worldagroforestry.org/treedb2/AFTPDFS/Anacardium_occidentale.pdf

  • de Paiva JR, Barros LDM, Cavalcanti JJV (2009) Cashew (Anacardium occidentale L.) breeding: a global perspective. In: breeding plantation tree crops: tropical species. Springer, New York, NY, pp 287–324

    Google Scholar 

  • Peña L, Séguin A (2001) Recent advances in the genetic transformation of trees. Trends Biotechnol 19(12):500–506

    PubMed  Google Scholar 

  • Pereira ACS, Reges CM, Reges IS, Rufino MSM, Alves RE, Silva MFG, Moura CFH (2011) Quality, bioactive compounds and antioxidant activity of cashew apples from precocious dwarf cashew clones CCP-09, CCP-76 and BRS-189. Acta Hortic. 906: 43–48. https://doi.org/10.17660/ActaHortic.2011.906.5

  • Pereira LD, Silva DF, Reis EF, Pinto JF, Assunção HF, Machado CG et al (2019) Characterization of bushy cashew (Anacardium humile A. St.-Hil.) in the State of Goiás, Brazil. J Agric Sci 11(5):183–194

    Google Scholar 

  • Pessoa-Filho M, Silva PIT, Resende LV, Vieira EA, Faleiro FG, Grattapaglia D, da Silva Junior OB (2018) Application of the Axiom 3K SNP genotyping array in cassava breeding and genetics. In: Plant and Animal Genome XXVI Conference (2018). San Diego. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/171614/1/apagar1.pdf

  • Queiroz MAD, Barros LDM, Carvalho LPD, Candeia JDA, Ferraz E (2012) Plant breeding in the semiarid region of Brazil: examples of success. Crop Breed Appl Biotechnol 12(SPE):57–66

    Google Scholar 

  • Ranathunge RACA, Attanayaka DPSTG, Samarajeewa DADS, Jayasekara SJBA (2014) Genetic diversity of cashew (Anacardium occidentale L.) germplasm collected from five districts of Sri Lanka as revealed by Random Amplified Polymorphic DNA (RAPD)

  • Reports and Data (2019) https://www.mordorintelligence.com/industry-reports/global-cashew-market. Accessed 20 Feb 2020

  • Rico R, Bulló M, Salas-Salvadó J (2016) Nutritional composition of raw fresh cashew (Anacardium occidentale L.) kernels from different origin. Food Sci Nutr 4(2):329–338

    CAS  PubMed  Google Scholar 

  • Rosengarten F (1984) Cashew. In: Rosengarten, F. (Ed). The book of edible nuts. Walker and Co New York, pp 37-49

  • Samamad NTI, Ribeiro LPD, de Almeida Lopes MM, Puschmann R, de Oliveira Silva E (2018) Near infrared spectroscopy, a suitable tool for fast phenotyping–the case of cashew genetic improvement. Sci Hortic 238:363–368

    CAS  Google Scholar 

  • Saroj PL, Bhat PS, Srikumar KK (2016) Tea mosquito bug (Helopeltis spp.)–A devastating pest of cashew plantations in India: A review. Indian J Agri Sci 86(2):151–62

  • Savadi S, Naresh V, Kumar V, Bhat SR (2015) Seed-specific overexpression of Arabidopsis DGAT1 in Indian mustard (Brassica juncea) increases seed oil content and seed weight. Botany 94(3):177–184

    Google Scholar 

  • Savadi S, Lambani N, Kashyap PL, Bisht DS (2017) Genetic engineering approaches to enhance oil content in oilseed crops. Plant Growth Regul 83(2):207–222

    CAS  Google Scholar 

  • Schlathölter I, Jänsch M, Flachowsky H, Broggini GAL, Hanke MV, Patocchi A (2018) Generation of advanced fire blight-resistant apple (Malus× domestica) selections of the fifth generation within 7 years of applying the early flowering approach. Planta 247(6):1475–1488

    PubMed  PubMed Central  Google Scholar 

  • Schuler TH, Poppy GM, Kerry BR, Denholm I (1998) Insect-resistant transgenic plants. Trends Biotechnol 16:168–175

    CAS  Google Scholar 

  • Sekar C, Karunakaran KR (1994) Economic analysis of cashew plantations under agroforestry conditions of central Tamil Nadu. J Trop For Sci:523–528

  • Senguttuvan T, Mahadevan NR (1997) Studies on the population fluctuation and management of cashew stem and root borer, Plocaederus ferrugineus L. Pest Management in- Horticultural Ecosystems 3(2):85–94

  • Sethi KABITA, Tripathy SK, Lenka PC (2016) Assessment of genetic diversity and identification of elite cashew hybrids. Adv Life Sci 5(16):6200–6205

    Google Scholar 

  • Shalem O, Sanjana NE, Zhang F (2015) High-throughput functional genomics using CRISPR–Cas9. Nat Rev Genet 16(5):299–311

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Kamer PC, Cole-Hamilton DJ (2019) Synthesis of pharmaceutical drugs from cardanol derived from cashew nut shell liquid. Green Chem 21(5):1043–1053

    CAS  Google Scholar 

  • Sika KC, Adoukonou-Sagbadja H, Ahoton L, Saidou A, Ahanchede A et al (2015) Genetic characterization of cashew (Anacardium occidentale L) cultivars from Benin. J Hortic 2:153. https://doi.org/10.4172/2376-0354.1000153

  • Soares DJ, Vasconcelos PHMD, Camelo ALM, Longhinotti E, Sousa PHMD, Figueiredo RWD (2013) Prevalent fatty acids in cashew nuts obtained from conventional and organic cultivation in different stages of processing. Food Sci Technol 33(2):265–270

    Google Scholar 

  • Song GQ, Sink KC, Walworth AE, Cook MA, Allison RF, Lang GA (2013) Engineering cherry rootstocks with resistance to Prunus necrotic ring spot virus through RNA i-mediated silencing. Plant Biotechnol J 11(6):702–708

    CAS  PubMed  Google Scholar 

  • de Sousa Leite A, Islam MT, Júnior ALG, Sousa JMDC, de Alencar MVOB, Paz MFCJ et al (2016) Pharmacological properties of cashew (Anacardium occidentale). Afr J Biotechnol 15(35):1855–1863

    Google Scholar 

  • de Souza LM, Le Guen V, Cerqueira-Silva CBM, Silva CC, Mantello CC, Conson ARO et al (2015) Genetic diversity strategy for the management and use of rubber genetic resources: more than 1,000 wild and cultivated accessions in a 100-genotype core collection. PLoS One 10(7):e0134607

    PubMed  PubMed Central  Google Scholar 

  • Sun X, Jia X, Huo L, Che R, Gong X, Wang P, Ma F (2018a) MdATG18a overexpression improves tolerance to nitrogen deficiency and regulates anthocyanin accumulation through increased autophagy in transgenic apple. Plant Cell Environ 41(2):469–480

    CAS  PubMed  Google Scholar 

  • Sun X, Wang P, Jia X, Huo L, Che R, Ma F (2018b) Improvement of drought tolerance by overexpressing MdATG18a is mediated by modified antioxidant system and activated autophagy in transgenic apple. Plant Biotechnol J 16(2):545–557

    CAS  PubMed  Google Scholar 

  • Swamy BM, Shamsudin NAA, Rahman SNA, Mauleon R, Ratnam W, Cruz MTS, Kumar A (2017) Association mapping of yield and yield-related traits under reproductive stage drought stress in rice (Oryza sativa L.). Rice 10(1):21

    PubMed  PubMed Central  Google Scholar 

  • Tadele Z (2016) Mutagenesis and TILLING to dissect gene function in plants. Curr Genom 17(6):499–508

    CAS  Google Scholar 

  • Thimmappaiah S, W. G, Shobha D, Melwyn GS (2009) Assessment of genetic diversity in cashew germplasm using RAPD and ISSR markers. Sci Hortic 120:411417

    Google Scholar 

  • Thimmappaiah, Shobha D, Mohana GS, Dinakara JA, Bhat PG (2016) Fingerprinting of released varieties of cashew based on DNA markers. Vegetos 29:4–12

  • Uaciquete A (2006) Epidemiology and control of powdery mildew (Oidium anacardii Noack) on cashew (Anacardium occidentale L.) in Mozambique (Doctoral dissertation, University of Pretoria)

  • Uaciquete A, Korsten L, Van der Waals JE (2013) A search for anthracnose resistant cashew cultivars in Mozambique. Crop Prot 50:6–11

    Google Scholar 

  • Vahdati K, Mohseniazar M (2016) Early bearing genotypes of walnut: a suitable material for breeding and high density orchards. Acta Hortic 1139:101–106

  • Van Bien P, Binh NT, Hoc NT, Van Dau P, Nam TNT, Phuong NB (2005) Results of selection and development of cashews and pepper varieties. AGRIS, FAO. 130–145

  • Vicente AR, Sozzi GO (2007) Ripening and postharvest storage of ‘soft fruits’. Fruit Veg Cereal Sci Biotechnol 1:95–103

    Google Scholar 

  • Wang GY, Yang MS, Huo XM, Wang YP, Li SS (2012) Transformation of 741 poplar with double Bt genes and the insect resistance of the transgenic plant. Sci Silvae Sin 48:42–49

    Google Scholar 

  • Wang G, Dong Y, Liu X, Yao G, Yu X, Yang M (2018a) The current status and development of insect-resistant genetically engineered poplar in China. Front Plant Sci:9

  • Wang X, Xu Y, Hu Z, Xu C (2018b) Genomic selection methods for crop improvement: current status and prospects. Crop J 6:330–340

    Google Scholar 

  • Wang Z, Wang S, Li D, Zhang Q, Li L, Zhong C, Liu Y, Huang H (2018c) Optimized paired-sgRNA/Cas9 cloning and expression cassette triggers high-efficiency multiplex genome editing in kiwifruit. Plant Biotechnol J 16:1424–1433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wickens GE, Chomsky N (1995) Cashew or Monkey nut. In: Wickens (Ed). Edible nuts (No. 5). Food and Agriculture Organization of the United Nations. Rome, Italy, pp 13-17. https://www.fao.org/3/v8929e/v8929e.pdf

  • Wonni I, Sereme D, Ouedraogo I, Kassankagno AI, Dao I, Ouedraogo L, Nacro S (2017) Diseases of cashew nut plants (Anacardium occidentale L.) in Burkina Faso. Adv Plants Agric Res 6(3):10–15406

    Google Scholar 

  • Xu K (2013) An overview of Arctic apples: basic facts and characteristics. NY Fruit Q 21:8–10

    CAS  Google Scholar 

  • Xu Y, Li P, Yang Z, Xu C (2017) Genetic mapping of quantitative trait loci in crops. Crop J 5(2):175–184

    Google Scholar 

  • Yamamoto T, Iketani H, Ieki H, Nishizawa Y, Notsuka K, Hibi T, Hayashi T, Matsuta N (2000) Transgenic grapevine plants expressing a rice chitinase with enhanced resistance to fungal pathogens. Plant Cell Rep 19(7):639–646

    CAS  PubMed  Google Scholar 

  • Yang L, Zhao X, Ran L, Li C, Fan D, Luo K (2017) PtoMYB156 is involved in negative regulation of phenylpropanoid metabolism and secondary cell wall biosynthesis during wood formation in poplar. Sci Rep 7:41209

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhen ZX, Li J, Liang HY, Tian YC, Yang MS (2007) Expressions of BtCry3a gene in transgenic poplar and its resistance against Apriona germari. Sci Sericult 33:538–542

    CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge Dr. M. G. Nayak, Director (Acting), ICAR-Directorate of Cashew Research (DCR), Puttur, D.K., Karnataka, India and ICAR, New Delhi, India for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddanna Savadi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data archiving statement

Data sharing not applicable to this review article as no datasets were generated or analysed during the current study.

Additional information

Communicated by S.C. González-Martínez

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 40.2 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Savadi, S., Muralidhara, B.M. & Preethi, P. Advances in genomics of cashew tree: molecular tools and strategies for accelerated breeding. Tree Genetics & Genomes 16, 61 (2020). https://doi.org/10.1007/s11295-020-01453-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-020-01453-z

Keywords

  • Cashew
  • Anacardium
  • Genomics
  • Tree
  • Biotechnology
  • Nut
  • TILLING
  • NGS