In situ estimation of genetic variation of functional and ecological traits in Quercus petraea and Q. robur

Abstract

Predicting the evolutionary potential of natural tree populations requires the estimation of heritability and genetic correlations among traits on which selection acts, as differences in evolutionary success between species may rely on differences for these genetic parameters. In situ estimates are expected to be more accurate than measures done under controlled conditions which do not reflect the natural environmental variance. The aim of the current study was to estimate three genetic parameters (i.e., heritability, evolvability, and genetic correlations) in a natural mixed oak stand composed of Quercus petraea and Quercus robur about 100 years old, for 58 traits of ecological, and functional relevance (growth, reproduction, phenology, physiology, resilience, structure, morphology, and defense). First, we estimated genetic parameters directly in situ using realized genomic relatedness of adult trees and parentage relationships over two generations to estimate the traits’ additive variance. Secondly, we benefited from existing ex situ experiments (progeny tests and conservation collection) installed with the same populations, thus allowing comparisons of in situ heritability estimates with more traditional methods. Heritability and evolvability estimates obtained with different methods varied substantially and showed large confidence intervals; however, we found that in situ were less precise than ex situ estimates, and assessments over two generations (with deeper relatedness) improved estimates of heritability while large sampling sizes are needed for accurate estimations. At the biological level, heritability values varied moderately across different ecological and functional categories of traits, and genetic correlations among traits were conserved over the two species. We identified limits for using realized genomic relatedness in natural stands to estimate the genetic variance, given the overall low variance of genetic relatedness and the rather low sampling sizes of currently used long-term genetic plots in forestry. These limits can be overcome if larger sample sizes are considered, or if the approach is extended over the next generation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Akesson M, Bensch S, Hasselquist D, Tarka M, Hansson B (2008) Estimating heritabilities and genetic correlations : comparing the “animal model” with parent-offspring regression using data from a natural population. PloS one 3:e1739. https://doi.org/10.1371/journal.pone.0001739

    PubMed  PubMed Central  Google Scholar 

  2. Armbruster WS, Pelabon C, Bolstad GH, Hansen TF (2014) Integrated phenotypes: understanding trait covariation in plants and animals. Phil Trans R Soc B 369:20130245. https://doi.org/10.1098/rstb.2013.0245

    PubMed  Google Scholar 

  3. Bacilieri R, Labbe T, Kremer A (1994) Intraspecific genetic structure in a mixed population of Quercus petraea (Matt.) Leibl and Q. robur L. Heredity 73:130–141. https://doi.org/10.1038/hdy.1994.112

    Google Scholar 

  4. Bacilieri R, Ducousso A, Kremer A (1996) Comparison of morphological characters and molecular markers for the analysis of hybridization in sessile and pedunculate oak. Ann Sci Forest 53:79–91. https://doi.org/10.1051/forest:19960106

    Google Scholar 

  5. Bėrėnos C, Ellis PA, Pilkington JG, Pemberton JM (2014) Estimating quantitative genetic parameters in wild populations: a comparison of pedigree and genomic approaches. Mol Ecol 23:3434–3451. https://doi.org/10.1111/mec.12827

    PubMed  PubMed Central  Google Scholar 

  6. Bontemps A, Lefėvre F, Davi H, Oddou-Muratorio S (2016) In situ marker-based assessment of leaf trait evolutionary potential in a marginal European beech population. J Evol Biol 29:514–527. https://doi.org/10.1111/jeb.12801

    CAS  PubMed  Google Scholar 

  7. Brendel O, Le Thiec D, Scotti-Saintagne C, Bodėnės C, Kremer A, Guehl JM (2008) Quantitative trait loci controlling water use efficiency and related traits in Quercus robur L. Tree Genet Genomes 4:263–278. https://doi.org/10.1007/s11295-007-0107-z

    Google Scholar 

  8. Brendel O (2014) Is the coefficient of variation a valid measure for variability of stable isotope abundances in biological materials? Rapid Commun Mass Spectrom 28:370–376

    CAS  PubMed  Google Scholar 

  9. Carmona D, Lajeunesse MJ, Johnson MTJ (2011) Plant traits that predict resistance to herbivores. Funct Ecol 25:358–367. https://doi.org/10.1111/j.1365-2435.2010.01794.x

    Google Scholar 

  10. Castellanos MC, Gonzalez-Martinez SC, Pausas JG (2015) Field heritability of a plant adaptation to fire in heterogeneous landscapes. Mol Ecol 24:5633–5642. https://doi.org/10.1111/mec.13421

    CAS  PubMed  Google Scholar 

  11. Charmantier A, Garant D, Kruuk LE (2014) Quantitative genetics in the wild. Oxford University Press, New York

    Google Scholar 

  12. Coltman DW (2005) Testing marker-based estimates of heritability in the wild. Mol Ecol 14:2593–2599. https://doi.org/10.1111/j.1365-294X.2005.02600.x

    CAS  PubMed  Google Scholar 

  13. Contreras MA, Affleck D, Chung W (2011) Forest ecology and management evaluating tree competition indices as predictors of basal area increment in western Montana forests. For Ecol Manag 262:1939–1949. https://doi.org/10.1016/j.foreco.2011.08.031

    Google Scholar 

  14. Cornelius J (1994) Heritabilities and additive genetic coefficients of variation in forest trees. Can J Forest Res 24:372–379

    Google Scholar 

  15. Firmat C, Delzon S, Louvet J, Parmentier J, Kremer A (2017) Evolutionary dynamics of the leaf phenological cycle in an oak metapopulation along an elevation gradient. J Evol Biol 30:2116–2131. https://doi.org/10.1111/jeb.13185

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Folke C, Carpenter S, Walker B, Scheffer M, Elmqvist T, Gunderson L, Holling CS (2004) Regime shifts, resilience, and biodiversity in ecosystem management. Annual Review of Ecology. Evol Syst 35:557–581. https://doi.org/10.1146/annurev.ecolsys.35.021103.105711

    Google Scholar 

  17. Gauzere J, Oddou-Muratorio S, Pichot C, Lefèvre F, Klein E (2013) Biases in quantitative genetic analyses using open-pollinated progeny tests from natural tree populations. Acta Botanica Gallica 160:227–238

    Google Scholar 

  18. Gerber S, Chadoeuf J, Gugerli F, Lascoux M, Buiteveld J, Cottrell J, Dounavi A, Fineschi S, Forrest LL, Fogelqvist J, Goicoechea PG, Jensen JS, Salvini D, Vendramin GG, Kremer A (2014) High rates of gene flow by pollen and seed in oak populations across Europe. PloS one 9. https://doi.org/10.1371/journal.pone.0085130

  19. Guilley E (2000) La densitė du bois de chėne sessile (Quercus petraea Liebl.). PhD thesis, Ecole Nationale Du Gėnie Rural Des Eaux Et Forėts

  20. Hadfield JD, Wilson AJ, Garant D, Sheldon BC, Kruuk LEB (2010) The misuse of BLUP in ecology and evolution. Amer Nat 175:116–125. https://doi.org/10.1086/648604

    Google Scholar 

  21. Hansen TF, Pe C, Houle D (2011) Heritability is not Evolvability. Evol Biol 38:258. https://doi.org/10.1007/s11692-011-9127-6

    Google Scholar 

  22. Hegyi F (1974) A simulation model for managing jack-pine stands. In: Fries J (ed) Growth models for tree and stand simulation. Royal College of Forestery, Stockholm, pp 74–90

  23. Kremer A (1992) Predictions of age-age correlations of total height based on serial correlations between height increments in maritime pine (Pinus pinaster Ait.) Theor Appl Genet 85:152–158

    CAS  PubMed  Google Scholar 

  24. Kremer A, Dupouey JL, Deans JD, Cottrell J, Csaikl U, Finkeldey R, Espinel S, Jensen J, Kleinschmit J, Van Dam B, Ducousso A, Forrest I, Lopez de Heredia U, Lowe AJ, Tutkova M, Munro RC, Steinhoff S, Badeau V, Luc J, Deans JD, Cottrell J, Csaikl U, Finkeldey R, Espinel S, Jensen J, Kleinschmit J, Dam BV, Ducousso A, Forrest I, Heredia ULD, Lowe AJ, Tutkova M, Munro RC, Steinhoff S, Badeau V (2002) Leaf morphological differentiation between Quercus robur and Quercus petraea is stable across western European mixed oak stands. Ann Forest Sci 59:777–787. https://doi.org/10.1051/forest:2002065

    Google Scholar 

  25. Kruuk LEB (2004) Estimating genetic parameters in natural populations using the ’‘animal model ’. Phil Trans R Soc B 359:873–890. https://doi.org/10.1098/rstb.2003.1437

    PubMed  Google Scholar 

  26. Kruuk LEB, Hadfield JD (2007) How to separate genetic and environmental causes of similarity between relatives. J Evol Biol 20:1890–1903. https://doi.org/10.1111/j.1420-9101.2007.01377.x

    CAS  PubMed  Google Scholar 

  27. Lagache L, Klein EK, Guichoux E, Petit RJ (2013) Fine-scale environmental control of hybridization in oaks. Mol Ecol 22:423–436. https://doi.org/10.1111/mec.12121

    PubMed  Google Scholar 

  28. Le Rouzic A, Alvarez-Castro J, Hansen TF (2013) The evolution of canalization and evolvability in stable and fluctuating environments. Evol Biol 40:317–340. https://doi.org/10.1007/s11692-012-9218-z

    Google Scholar 

  29. Lesur I, Alexandre H, Boury C, Chancerel E, Plomion C, Kremer A (2018) Development of target sequence capture and estimation of genomic relatedness in a mixed oak stand. Frontiers in plant science 9

  30. Lloret F, Keeling EG, Sala A (2011) Components of tree resilience : effects of successive low-growth episodes in old ponderosa pine forests. Oikos 120(12):1909–1920. https://doi.org/10.1111/j.1600-0706.2011.19372.x

    Google Scholar 

  31. Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates. Inc, Sunderland

  32. Marshall T, Slate J, Kruuk LEB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655

    CAS  PubMed  Google Scholar 

  33. Morrissey MB, Wilson AJ, Pemberton JM, Ferguson MM (2007) A framework for power and sensitivity analyses for quantitative genetic studies of natural populations , and case studies in Soay sheep (Ovis aries). J Evol Biol 20:2309–2321. https://doi.org/10.1111/j.1420-9101.2007.01412.x

    CAS  PubMed  Google Scholar 

  34. Mousseau TA, Ritland K, Heath DD (1998) A novel method for estimating heritability using molecular markers. Heredity 80:218–224

    Google Scholar 

  35. Munoz F, Sanchez L (2018) breedR: Statistical methods for forest genetic resources analysts. famuvie.github.io/breedR/

  36. Perrier C, Delahaie B, Charmantier A (2018) Heritability estimates from genomewide relatedness matrices in wild populations : application to a passerine , using a small sample size. Mol Ecol Resour 18:838–853. https://doi.org/10.1111/1755-0998.12886

    CAS  PubMed  Google Scholar 

  37. Pigliucci M (2008) Is evolvability evolvable?. Nat Rev Genet 9:75–82

    CAS  PubMed  Google Scholar 

  38. Polge H, Nicholls J (1972) Quantitative radiography and the densitometric analysis of wood. Wood Sci 5:51–59

    Google Scholar 

  39. Ponzoni R, James J (1978) Possible biases in heritability estimates from intraclass correlation. Theor Appl Genet 53:25–27

    CAS  PubMed  Google Scholar 

  40. Price TD, Schluter D (1991) On the low heritability of life-history traits. Evolution 45:853–861

    PubMed  Google Scholar 

  41. Prida A, Boulet JC, Ducousso A, Nepveu G, Puech JL (2006) Effect of species and ecological conditions on ellagitannin content in oak wood from an even-aged and mixed stand of Quercus robur L. and Quercus petraea Liebl. Ann Forest Sci 63:415–424. https://doi.org/10.1051/forest:2006021

    CAS  Google Scholar 

  42. Prida A, Ducousso A, Petit RJ, Nepveu G, Puech JL (2007) Variation in wood volatile compounds in a mixed oak stand: strong species and spatial differentiation in whisky-lactone content. Ann Forest Sci 64:313–320. https://doi.org/10.1051/forest:2007008

    CAS  Google Scholar 

  43. Ratcliffe B, Gamal El-Dien O, Cappa EP, Porth I, Klapste J, Chen C, El-Kassaby Y (2017) Single-step BLUP with varying genotyping effort in open-pollinated Picea glauca. Genes Genomes Gen 7:935–942. https://doi.org/10.5061/dryad.6rd6f

    Google Scholar 

  44. Ritland K (2000) Marker-inferred relatedness as a tool for detecting heritability in nature. Mol Ecol 9:1195–1204

    CAS  PubMed  Google Scholar 

  45. Robinson MR, Santure AW, Decauwer I, Sheldon BC, Slate J (2013) Partitioning of genetic variation across the genome using multimarker methods in a wild bird population. Mol Ecol 22:3963–3980. https://doi.org/10.1111/mec.12375

    PubMed  Google Scholar 

  46. Rweyongeza DM (2016) A new approach to prediction of the age-age correlation for use in tree breeding. Ann For Sci 73:1099–1111. https://doi.org/10.1007/s13595-016-0570-5

    Google Scholar 

  47. Schweiger R, Kaufman S, Laaksonen R, Kleber ME, Marz W, Eskin E, Rosset S, Halperin E (2016) Fast and accurate construction of confidence intervals for heritability. Amer J Hum Gen 98:1181–1192. https://doi.org/10.1016/j.ajhg.2016.04.016

    CAS  Google Scholar 

  48. Stanton-Geddes J, Yoder JB, Briskine R, Young ND, Tiffin P (2013) Estimating heritability using genomic data. Methods Ecol Evol 4:1151–1158. https://doi.org/10.1111/2041-210X.12129

    Google Scholar 

  49. Streiff R, Labbe T, Bacilieri R, Steinkellner H, Krem GJ (1998) Within-population genetic structure in Quercus robur L. and Quercus petraea (Matt.) Liebl. assessed with isozymes and microsatellites. Mol Ecol 7:317–328. https://doi.org/10.1046/j.1365-294X.1998.00360.x/abs

    Google Scholar 

  50. Torres-Ruiz J, Kremer A, Carins-Murphy M, Brodribb T, Lamarque L, Truffaut L, Bonne F, Ducousso A, Dolzon S (2019) Genetic differentiation in functional traits among European sessile oak populations. Tree Physiology in press

  51. Truffaut L, Chancerel E, Ducousso A, Dupouey JL, Badeau V, Ehrenmann F, Kremer A (2017) Fine-scale species distribution changes in a mixed oak stand over two successive generations. New Phytol 215:126–139. https://doi.org/10.1111/nph.14561

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Tumlinson JH (2014) The importance of volatile organic compounds in ecosystem functioning. J Chem Ecol 40:212–213. https://doi.org/10.1007/s10886-014-0399-z

    CAS  PubMed  Google Scholar 

  53. De Villemereuil P (2018) Quantitative genetic methods depending on the nature of the phenotypic trait. Ann N Y Acad Sci 1422(1):29–47. https://doi.org/10.1111/nyas.13571

    PubMed  Google Scholar 

  54. Vinkhuyzen AA, Wray NR, Yang J, Goddard ME, Visscher PM (2013) Estimation and partition of heritability in human populations using whole-genome analysis methods. Annu Rev Genet 47:75–95. https://doi.org/10.1146/annurev-genet-111212-133258

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Visscher PM (2008) Sizing up human height variation. Nat Gen 40:489–490. https://doi.org/10.1038/ng0508-489

    CAS  Google Scholar 

  56. Visscher PM, Goddard ME (2015) A general unified framework to assess the sampling variance of heritability estimates using pedigree or marker-based relationships. Genetics 199:223–232. https://doi.org/10.1534/genetics.114.171017

    PubMed  Google Scholar 

  57. Visscher PM, Hill WG, Wray NR (2008) Heritability in the genomics era - concepts and misconceptions. Nat Rev Genet 9:255–266. https://doi.org/10.1038/nrg2322

    CAS  PubMed  Google Scholar 

  58. Vitasse Y, Delzon S, Dufre E (2009) Leaf phenology sensitivity to temperature in European trees : do within-species populations exhibit similar responses ?. Agricul Forest Meteorol 149:735–744. https://doi.org/10.1016/j.agrformet.2008.10.019

    Google Scholar 

  59. Weigensberg I, Roff DA (1996) Natural heritabilities: can they be reliably estimated in the laboratory? Evolution 50:2149–2157

    PubMed  Google Scholar 

  60. Wilson AJ (2008) Why h2 does not always equal VA/VP?. J Evol Biol 21:647–650. https://doi.org/10.1111/j.1420-9101.2008.01500.x

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Office National des Forêts and its staff in charge of the Petite Charnie Forest for their constant support and technical assistance during the long term research activities conducted at La Petite Charnie. We are grateful to the staff of the State Nursery of Guéméné Penfao for the raising of the seedlings of the progeny tests and grafting of the trees for the conservation collection. We acknowledge the contribution of Roberto Bacilieri, Maria Evangelista Bertocchi, Gaëlle Capdeville, Benjamin Dencausse, François Ehrenmann, Frédéric Expert, Edith Guilley, Marilyn Harroué, Thibault Leroy, Yannick Mellerin, Nastasia Merceron, André Perrin, Andrei Prida, Jean-Louis Puech, Cyrille Rathgeber, Patrick Reynet, Daniel Rittié, Guy Roussel, Armel Thöni, as well as the staff of the Experimental Units of INRA Pierroton (UE 0570, INRA, 33612 Cestas, France) for the collection of material, the plantation of the progeny tests, and for the monitoring of the numerous traits at various periods during the last 30 years. Sequencing and genotyping for the parentage analysis and relatedness estimation was performed by Christophe Boury, Emilie Chancerel, Erwan Guichoux, Lélia Lagache at the Genome-Transcriptome facility at the Functional Genomic Center of Bordeaux. Bioinformatic analysis for SNP calling was done by Isabelle Lesur (Helix Venture, 33700 Merignac, France).

Funding

This research was supported by the European Research Council through the Advanced Grant Project TREEPEACE (no. FP7-339728). UMR BIOGECO is supported by a grant overseen by the French National Research Agency (ANR) as part of the “Investissements d’Avenir” programme Labex COTE (ANR-10-LABEX45).

Author information

Affiliations

Authors

Contributions

AK and HA conceived the study. HA conducted the data analysis with the contribution of CF and AK. AD, JML, LT and BM planned the experimental operations, organized collection of material and data, participated to the data management. GN, JMTR, LT, SD, FL contributed to the collection of physiological, growth, resilience and wood density data and their pre analysis. HA and AK wrote the manuscript and all other authors revised the manuscript.

Corresponding author

Correspondence to Antoine Kremer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Data archiving statement

Data are stored at the Treepop database of the Quercus Portal. https://treepop.pierroton.inra.fr/

Communicated by: J. Wright

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 1.51 MB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alexandre, H., Truffaut, L., Ducousso, A. et al. In situ estimation of genetic variation of functional and ecological traits in Quercus petraea and Q. robur. Tree Genetics & Genomes 16, 32 (2020). https://doi.org/10.1007/s11295-019-1407-9

Download citation

Keywords

  • Heritability
  • Evolvability
  • Genomic relatedness
  • Natural population
  • Tree
  • Genetic correlation