Skip to main content

Advertisement

Log in

Characterizing the genetic diversity of Atlas cedar and phylogeny of Mediterranean Cedrus species with a new multiplex of 16 SSR markers

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Cedar is an emblematic Mediterranean forest tree. Genetic research activities on Mediterranean Cedrus species are progressively developed in relation to conservation, restoration, and exploitation plans of these forest tree species. However, currently available molecular biology tools supporting genetic research in these fields are still scarce and have a limited genetic resolution potential. We developed a new set of 12 nuclear microsatellite markers (nSSRs) on Cedrus atlantica that we combined with four previously developed ones in three multiplexes. We checked their monogenic inheritance in controlled crosses. We used a collection of 131 samples from six populations of C. atlantica to estimate null allele frequencies and probability of identity and to characterize the structure of genetic diversity in the fragmented distribution range of this species. We also tested the transferability of the markers to another set of 36 samples from the other Mediterranean Cedrus species and performed a phylogenetic analysis. The three multiplexes reached a high level of resolution potential that we used to evaluate sampling quality. Null allele frequency estimates showed no specific pattern across populations or across species and did not affect the results of biogeographic and phylogenic analyses. Our results reveal a very clear geographical genetic structure within C. atlantica, and the phylogenic tree matched previous analyses based on other markers. Our results confirm the potential interest of these nSSR multiplexes for genotyping in Cedrus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arbez M, Ferrandes P, Uyar N (1978) Contribution à l’étude de la variabilité géographique des Cèdres. Ann Sci For 35:265–284

    Article  Google Scholar 

  • Avise JC (1994) Molecular markers, natural history and evolution. Chapman & Hall, London

    Book  Google Scholar 

  • Bou Dagher-Kharrat M, Grenier G, Bariteau M, Brown S, Siljak-Yakovlev S, Savouré A (2001) Karyotype analysis reveals interspecific differentiation in the genus Cedrus despite genome size and base composition constancy. Theor Appl Genet 103:846–854

    Article  Google Scholar 

  • Bou Dagher-Kharrat M, Mariette S, Lefèvre F, Fady B, March GG, Plomion C, Savouré A (2007) Geographical diversity and genetic relationships among Cedrus species estimated by AFLP. Tree Genet Genomes 3:275–285

    Article  Google Scholar 

  • Boydak M (2003) Regeneration of Lebanon cedar (Cedrus libani A. Rich.) on karstic lands in Turkey. For Ecol Manag 178:231–243

    Article  Google Scholar 

  • Chaib J, Danan S, Jouaud B, Hagen LS, Lefèvre F, Fady B (2006) Identification and characterization of nuclear microsatellites in Mediterranean cedars (Cedrus sp.). Mol Ecol Notes 6:840–842

    Article  CAS  Google Scholar 

  • Cheddadi R, Fady B, François L, Hajar L, Suc JP, Huang K, Demarteau M, Vendramin GG, Ortu E (2009) Putative glacial refugia of Cedrus atlantica deduced from quaternary pollen records and modern genetic diversity. J Biogeogr 36:1361–1371

    Article  Google Scholar 

  • Christou A, Gardner M (2011) Cedrus libani var. brevifolia. The IUCN red list of threatened species 2011:e.T34148A9844497

  • Dąbrowski MJ, Pilot M, Kruczyk M, Żmihorski M, Umer HM, Gliwicz J (2014) Reliability assessment of null allele detection: inconsistencies between and within different methods. Mol Ecol Resour 14:361–373

    Article  PubMed  Google Scholar 

  • Dray S, Dufour A (2007) The ade4 Package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20

    Article  Google Scholar 

  • Eliades NGH, Gailing O, Leinemann L, Fady B, Finkeldey R (2011) High genetic diversity and significant population structure in Cedrus brevifolia Henry, a narrow endemic Mediterranean tree from Cyprus. Plant Syst Evol 294:185–198

    Article  Google Scholar 

  • Eliades NG, Fady B, Gailing O, Leinemann L, Finkeldey R (2018) Significant patterns of fine-scale spatial genetic structure in a narrow endemic wind-dispersed tree species, Cedrus brevifolia Henry. Tree Genet Genomes 14:15

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Fabre JP, Alptekin CU, Chalon A (1994) Importance des attaques des graines de cèdre du Liban, Cedrus libani, en Turquie par Megastigmus schimitscheki (Hymenoptera Torymidae) et risques d’extension de cet insecte au cèdre de l’Atlas, Cedrus alantica. Annales Des Sciences Forestieres Du Maroc 27:566–575

    Google Scholar 

  • Fady B, Lefèvre F, Reynaud M, Vendramin GG, Bou Dagher-Kharrat M, Anzidei M, Pastorelli R, Savouré A, Bariteau M (2003) Gene flow among different taxonomic units: evidence from nuclear and cytoplasmic markers in Cedrus plantation forests. Theor Appl Genet 107:1132–1138

    Article  CAS  PubMed  Google Scholar 

  • Fady B, Lefèvre F, Vendramin GG, Ambert A, Régnier C, Bariteau M (2008) Genetic consequences of past climate and human impact on eastern Mediterranean Cedrus libani forests. Implications for their conservation. Conserv Genet 9:85–95

    Article  Google Scholar 

  • Fallour D, Fady B, Lefèvre F (2001) Evidence of variation in segregation patterns within a Cedrus population. J Hered 92:260–266

    Article  CAS  PubMed  Google Scholar 

  • Fallour-Rubio D, Guibal F, Klein EK, Bariteau M, Lefèvre F (2009) Rapid changes in plasticity across generations within an expanding cedar forest. J Evol Biol 22:553–563

    Article  CAS  PubMed  Google Scholar 

  • Gardner M (2013) Cedrus libani var. libani. In The IUCN red list of threatened species 2013:e.T42305A2970821

  • Ginwal HS, Chauhan P, Barthwal S, Sharma A, Sharma R (2011) Short note: cross-species amplification and characterization of Pinus chloroplast microsatellite markers in Cedrus deodara Roxb. Silvae Genetica 60:65–69

    Article  Google Scholar 

  • Guichoux E, Lagache L, Wagner S, Chaumeil P, Léger P, Lepais O, Lepoittevin C, Malausa T, Revardel E, Salin F, Petit RJ (2011) Current trends in microsatellite genotyping. Mol Ecol Resour 11:591–611

    Article  CAS  PubMed  Google Scholar 

  • Guillemot J, Klein EK, Davi H, Courbet F (2015) The effects of thinning intensity and tree size on the growth response to annual climate in Cedrus atlantica: a linear mixed modeling approach. Ann For Sci 72:651–663

    Article  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  CAS  PubMed  Google Scholar 

  • Kalinowski ST, Taper ML (2006) Maximum likelihood estimation of the frequency of null alleles at microsatellite loci. Conserv Genet 7:991–995

    Article  CAS  Google Scholar 

  • Karam MJ, Lefèvre F, Bou Dagher-Kharrat M, Pinosio S, Vendramin GG (2015) Genomic exploration and molecular marker development in a large and complex conifer genome using RADseq and mRNAseq. Mol Ecol Resour 15:601–612

    Article  CAS  PubMed  Google Scholar 

  • Ladjal M, Deloche N, Huc R, Ducrey M (2007) Effects of soil and air drought on growth, plant water status and leaf gas exchange in three Mediterranean cedar species: Cedrus atlantica, C. brevifolia and C. libani. Trees - Structure and Function 21:201–213

    Article  Google Scholar 

  • Lefèvre F, Fady B, Fallour-Rubio D, Ghosn D, Bariteau M (2004) Impact of founder population, drift and selection on the genetic diversity of a recently translocated tree population. Heredity 93:542–550

    Article  PubMed  Google Scholar 

  • Linares JC, Taïqui L, Camarero JJ (2011) Increasing drought sensitivity and decline of Atlas Cedar (Cedrus atlantica) in the Moroccan Middle Atlas forests. Forests 2:777–796

    Article  Google Scholar 

  • Lynch M, Ritland K (1999) Estimation of pairwise relatedness with molecular markers. Genetics 152:1753–1766

    CAS  PubMed  PubMed Central  Google Scholar 

  • Malausa T, Gilles A, Meglécz E, Blanquart H, Duthoy S, Costedoat C, Dubut V, Pech N, Castagnone-Sereno P, Délye C, Feau N, Frey P, Gauthier P, Guillemaud T, Hazard L, Le Corre V, Lunq-Escarmant B, Malé PJ, Ferreira S, Martin JF (2011) High-throughput microsatellite isolation through 454 GS-FLX titanium pyrosequencing of enriched DNA libraries. Mol Ecol Resour 11:638–644

    Article  CAS  PubMed  Google Scholar 

  • Meglécz E, Pech N, Gilles A, Dubut V, Hingamp P, Trilles A, Grenier R, Martin JF (2014) QDD version 3.1: a user-friendly computer program for microsatellite selection and primer design revisited: experimental validation of variables determining genotyping success rate. Mol Ecol Resour 14:1302–1313

    Article  PubMed  Google Scholar 

  • Messinger J, Güney A, Zimmermann R, Ganser B, Bachmann M, Remmele S, Aas G (2015) Cedrus libani: a promising tree species for Central European forestry facing climate change? Eur J For Res 134:1005–1017

    Article  Google Scholar 

  • Nei M (1972) Genetic distances between populations. Am Nat 106:283–292

    Article  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 23:341–369

    CAS  Google Scholar 

  • Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data. J Mol Evol 19:153–170

    Article  CAS  PubMed  Google Scholar 

  • Paetkau D, Waits LP, Clarkson PL, Craighead L, Vyse E, Ward R, Strobeck C (1998) Variation in genetic diversity across the range of North American brown bears. Conserv Biol 12:418–429

    Article  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pew J, Muir PH, Wang J, Frasier TR (2015) Related: an R package for analysing pairwise relatedness from codominant molecular markers. Mol Ecol Resour 15:557–561

    Article  PubMed  Google Scholar 

  • Piola F, Rohr R, Heizmann P (1999) Rapid detection of genetic variation within and among in vitro propagated cedar (Cedrus libani Loudon) clones. Plant Sci 141:159–163

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Renau-Morata B, Nebauer SG, Sales E, Allainguillaume J, Caligari P, Segura J (2005) Genetic diversity and structure of natural and managed populations of Cedrus atlantica (Pinaceae) assessed using random amplified polymorphic DNA. Am J Bot 92:875–884

    Article  CAS  PubMed  Google Scholar 

  • Rousset F (2008) GENEPOP ’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106

    Article  PubMed  Google Scholar 

  • Sattout EJ, Nemer N (2008) Managing climate change effects on relic forest ecosystems: a program for Lebanese Cedar. Biodiversity 9:122–130

    Article  Google Scholar 

  • Sattout EJ, Caligari PDS, Talhouk SN (2008) Perspectives for sustainable management of cedar forests in Lebanon: situation analysis and guidelines. Environ Dev Sustain 10:107–127

    Article  Google Scholar 

  • Scaltsoyiannes A (1999) Allozyme differentiation and phylogeny of Cedar species. Silvae Genetica 48:61–68

    Google Scholar 

  • Szpiech ZA, Jakobsson M, Rosenberg NA (2008) ADZE: a rarefaction approach for counting alleles private to combinations of populations. Bioinformatics 24:2498–2504. https://doi.org/10.1093/bioinformatics/btn478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terrab A, Hampe A, Lepais O, Talavera S, Vela E, Stuessy TF (2008) Phylogeography of North African Atlas cedar (Cedrus atlantica, Pinaceae): combined molecular and fossil data reveal a complex quaternary history. Am J Bot 95:1262–1269

    Article  PubMed  Google Scholar 

  • Thomas P (2013) Cedrus atlantica. In The IUCN red list of threatened species 2013: e.T42303A2970716

  • Tsintides T, Christodoulou CS, Delipetrou Georghiou K (2007) The red data book of the flora of Cyprus Cyprus Forest Association, Nicosia, Cyprus. p149

  • Tutin TG, Heywood VH, Burges NA, Valentine DH, Walters SM, Webb DA (1964) Flora Europaea. Vol. 1. Lycopodiaceae to Platanaceae. Flora Europaea. Vol. 1. Lycopodiaceae to Platanaceae

  • Valière N (2002) GIMLET: a computer program for analysing genetic individual identification data. Mol Ecol Notes 2:377–379

    Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Vendramin GG, Lelli L, Rossi P, Morgante M (1996) A set of primers for the amplification of 20 chloroplast microsatellites in Pinaceae. Mol Ecol 5:595–598

    Article  CAS  PubMed  Google Scholar 

  • Vidaković M (1991) Conifers: morphology and variation. Zagreb, Yugoslavia: Grafičko Zavod Hrvatske

  • Wazen N, Garavaglia V, Picard N, Besacier C, Fady B (2018) Distribution maps of twenty-four Mediterranean and European ecologically and economically important forest tree species compiled from historical data collections. bioRxiv doi: https://doi.org/10.1101/464834

Download references

Acknowledgments

We thank colleagues from INRA UEFM Avignon who performed the controlled crosses and take care of the collections in the field.

Funding

This work was funded by the Franco Portuguese EXPANDTREE project (ANR-13-ISV7-0003-01) and by INRA AIP Bioressources Ecomicro.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Lefèvre.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by G. G. Vendramin

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(XLSX 17 kb)

ESM 2

(XLSX 30 kb)

ESM 3

(XLSX 43 kb)

ESM 4

(DOCX 459 kb)

ESM 5

(DOCX 162 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karam, MJ., Aouad, M., Roig, A. et al. Characterizing the genetic diversity of Atlas cedar and phylogeny of Mediterranean Cedrus species with a new multiplex of 16 SSR markers. Tree Genetics & Genomes 15, 60 (2019). https://doi.org/10.1007/s11295-019-1366-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-019-1366-1

Keywords

Navigation