Abstract
The cultivated almond exhibits self-incompatibility of the gametophytic type regulated by the S-locus, which is expressed in both the pistil (S-RNase) and pollen (SFB protein). Although almond cultivars are mostly self-incompatible, some cultivars have been found to be self-compatible. For a long time, self-compatibility was unequivocally associated only with the presence of the Sf haplotype. However, recent studies reported the existence of self-incompatible almond cultivars carrying the Sf genotype. This finding suggests the involvement of new, hitherto undiscovered components involved in the almond self-incompatibility system. The aim of this study was to clarify the transcription pattern of the S-genes and to look for additional components of the gametophytic self-incompatibility system in almond. Transcriptome analysis of un-pollinated pistils and incompatible and compatible pollinations of self-compatible and self-incompatible almonds carrying the Sf haplotype was performed using high-throughput RNA sequencing technologies. Among the unigenes, 1357 were shown to be differentially expressed, and gene ontology annotation revealed that they are mostly involved in metabolic processes and binding molecular functions. The expression trend of fourteen representative genes, some of which are putatively involved in the self-(in)compatible response, was confirmed by RT-qPCR. This transcriptomic analysis provides candidate genes for almond components of gametophytic self-incompatibility and could be used as reference for subsequent comparative transcriptomic analyses of pollen and pistil.



Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Alkio M, Jonas U, Declerq M, Van Nocker S, Knoche M (2014) Transcriptional dynamics of the developing sweet cherry (Prunus avium L.) fruit: sequencing, annotation and expression profiling of exocarp-associated genes. Hortic Res 1:11
Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106
Anders S, Pyl PT, Huber W (2015) HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169
Andrews S (2010) FastQC: a quality control tool for high through put sequence data. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc
Ariani A, Di Baccio D, Romeo S, Lombardi L, Andreucci A et al (2015) RNA sequencing of Populus x canadensis roots identifies key molecular mechanisms underlying physiological adaption to excess zinc. PLoS One 10(2):e0117571. https://doi.org/10.1371/journal.pone.0117571
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwigth SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver R, Lewis S, Matese JE, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification if biology. Nat Genet 25:25–29
Badenes ML, Parfitt DE (1995) Phylogenetic relationships of cultivated Prunus species from an analysis of chloroplast DNA variation. Theor Appl Genet 90:1035–1041
Bošković R, Tobutt KR, Duval H, Batlle I, Dicenta F, Vargas FJ (1999) A stylar ribonuclease assay to detect self-compatible seedlings in almond progenies. Theor Appl Genet 99:800–810
Bošković RI, Tobutt KR, Ortega E, Sutherland BG, Godini A (2007) Self-(in)compatibility of the almonds P. dulcis and P. webbii in Apulia: detection and cloning of ‘wild type S f’ and alleles encoding inactive S-RNases. Mol Gen Genet 278:665–676
Buti M, Moretto M, Barghini E, Mascagni F, Natali L, Brilli M, Lomsadze A, Sonego P, Giongo L, Alonge M, Velasco R, Varotto C, Šurbanovski N, Borodovsky M, Ward JA, Engelen K, Cavallini A, Cestaro A, Sargent DJ (2018) The genome sequence and transcriptome of Potentilla micrantha and their comparison to Fragaria vesca (the woodland strawberry). Gigascience 1:1–14
Cachi AM, Wünsch A (2011) Characterization and mapping of non-S gametophytic self-compatibility in sweet cherry (Prunus avium L.). J Exp Bot 62:1847–1856
Cao J, Schneeberger K, Ossowski S, Günther T, Bender S, Fitz J, Wang X (2011) Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nat Genet 43:956–963
Caruso M, Merelo P, Distefano G, La Malfa S, Lo Piero AR, Tadeo FR, Talon M, Gentile A (2012) Comparative transcriptome analysis of stylar canal cells identifies novel candidate genes implicated in the self-incompatibility response of Citrus clementina. BMC Plant Biol 12:20
Chang Z, Chen Z, Yan W, Xie G, Lu J, Wang N, Lu Q, Yao N, Yang G, Xia J, Tang X (2016) An ABC transporter, OsABCG26, is required for anther cuticle and pollen exine formation and pollen-pistil interactions in rice. Plant Sci 253:21–30
Chen Y, Mao Y, Liu H, Yu F, Li S, Yin T (2014) Transcriptome differentially expressed genes relevant to variegation in peach flowers. PLoS One 9:e90842
Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676
Elleman CJ, Dickinson HG (1999) Commonalities between pollen/stigma and host/pathogen interactions: calcium accumulation during stigmatic penetration by Brassica oleracea pollen tubes. Sex Plant Reprod 12:194–202
Felipe AJ (1977) Stadi fenologico del mandorlo. Procedings of 3erd GREMPA colloquium, 3–7 October 1977, Valenzano, Bari, Italy. Edizioni Quadrifoglio, Bari. pp101–103
Feng J, Chen X, Wu Y, Liu W, Liang Q, Zhang L (2006) Detection and transcript expression of S-RNase gene associated with self-incompatibility in apricot (Prunus armeniaca L.). Mol Biol Rep 33:215–221
Fernández i Martí A, Hanada T, Alonso JM, Yamane H, Tao R, Socias i Company R (2010) The almond S f haplotype shows a double expression despite its comprehensive genetic identity. Sci Hortic 125:685–691
Fernández i Martí A, Howad W, Tao R, Alonso Segura JM, Arús P, Socias i Company R (2011) Identification of quantitative trait loci associated with self-compatibility in a Prunus species. Tree Genet Genomes 7:629–639
Feurtado JA, Huang D, Wicki-Stordeur L, Hemstock LE, Potentier MS, Tsang EWT, Cutler AJ (2011) The Arabidopsis C2H2 zinc finger indeterminate domain1/enhydrous promotes the transition to germination by regulating light and hormonal signaling during seed maturation. Plant Cell 23:1772–1794
Foote HCC, Ride JP, Franklin-Tong VE, Walker EA, Lawrence MJ, Franklin FCH (1994) Cloning and expression of a distinctive class of self-incompatibility (S) gene from Papaver rhoeas L. P Natl Acad Sci USA 91:2265–2269
Gambino G, Perrone I, Gribaudo I (2008) A rapid and effective method for RNA extraction from different tissues of grapevine and other woody plants. Phytochem Anal 19:520–525
Gao L, Wang YT, Li Z, Zhang Z, Ye JL, Li GH (2016) Gene expression changes during the gummosis development of peach shoots in response to Lasiodiplodia theobromae infection using RNA-Seq. Front Physiol 7:170
Giri J, Vij S, Dansana PK, Tyagi AK (2011) Rice A20/AN1 zinc-finger containing stress-associated proteins (SAP1/11) and a receptor-like cytoplasmic kinase (OsRLCK253) interact via A20 zinc-finger and confer abiotic stress tolerance in transgenic Arabidopsis plants. New Phytol 191:721–732
Godini A (1979) Ipotesi sulla comparsa dell’autocompatibilitá nel mandorlo. Scienzia e Tecnica Agraria 19:3–10
Gómez EM, Dicenta F, Martínez-García PJ, Ortega E (2015) iTRAQ-based quantitative proteomic analysis of pistils and anthers from self-incompatible and self-compatible almonds with the S f haplotype. Mol Breed 35:120
Gupta SK, Rai AK, Kanwar AA, Sharma TR (2012) Comparative analysis of zinc finger proteins involved in plant disease resistance. PLoS One 7(8):e42578
Habu T, Tao R (2014) Transcriptome analysis of self- and cross-pollinated pistils of Japanese apricot (Prunus mume Sieb. et Zucc.). J Japan Soc Hort Sci 83:95–107
Hanada T, Fakuta K, Yamane H, Esumi T, Tao R, Gradziel T, Dandekar AM, Fernández i Martí A, Alonso JM, Socias i Company R (2009) Cloning and characterization of a self-compatible S f haplotype in almond [Prunus dulcis (Mill.) D.A. Webb. syn. P. amygdalus Batsch] to resolve previous confusion in its S f -RNase sequence. HortScience 55:609–613
Harikrishna K, Rachanee JB, Stephen BM, Charles SG (1996) An endochitinase gene expressed at high levels in the stylar transmitting tissue of tomatoes. Pant Mol Biol 30:899–911
Hodgkin T, Lyon GD, Dickinson HG (1988) Recognition in flowering plants: a comparison of the Brassica self-incompatibility system and plant pathogen interactions. New Phytol 110:557–569
Iaria D, Chiappetta A, Muzzalupo I (2016) De novo transcriptome sequencing of Olea europaea L. to identify genes involved in the development of the pollen tube. Sci World J 17:359
Kakui H, Kato M, Ushijima K, Kitaguchi M, Kato S, Sassa H (2011) Sequence divergence and loss-of-function phenotypes of S locus F-box brothers genes are consistent with non-self-recognition by multiple pollen determinants in self-incompatibility of Japanese pear (Pyrus pyrifolia). Plant J 68:1028–1038
Kang J, Park J, Choi H, Burla B, KretzschmarT, Lee Y, Martinoia E (2011) Plant ABC transporters. The Arabidopsis book e0153. doi: https://doi.org/10.1199/tab.0153
Kodad O, Sánchez A, Saibo N, Oliveira M, Socías i Company R (2008) Identification and characterization of new S-alleles associated with self-incompatibility in almond. Plant Breed 127:632–638
Konrad KR, Wudick MM, Feijo JA (2011) Calcium regulation of tip growth: new genes for old mechanisms. Curr Opin Plant Biol 14:721–730
Łabaj PP, Leparc GG, Linggi BE, Markillie LM, Wiley HS, Kreil DP (2011) Characterization and improvement of RNA-Seq precision in quantitative transcript expression profiling. Bioinformatics 27:i383–i391
Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359
Leung DWM (1992) Involvement of plant chitinase in sexual reproduction of higher plants. Phytochemistry 31:1899–1900
Li H, Yang WC (2016) RLKs orchestrate the signaling in plant male-female interaction. Sci China Life Sci 59:867–877
Liu B, Morse D, Cappadocia M (2009) Compatible pollinations in Solanum chacoense decrease both S-RNase and S-RNase mRNA. PLoS One 4(6):e5774
Martínez-García PJ, Mañas F, López P, Dicenta F, Ortega E (2011) Molecular and phenotypic characterization of the S-locus and determination of flowering time in new ‘Marcona’ and ‘Desmayo Largueta’-type almond (Prunus dulcis) selections. Euphytica 177:67–78
Martínez-García PJ, Gómez EM, Casado-Vela J, Elortza F, Dicenta F, Ortega E (2015) Differential protein expression in compatible and incompatible pollen-pistil interactions in almond [Prunus dulcis (Miller) D.A: Webb] by 2D-DIGE and HPLC-MS/MS. J Hortic Sci Biotechnol 90:71–77
Martínez-Gómez P, Sánchez-Pérez R, Rubio M (2012) Clarifying omics concepts, challenges, and opportunities for Prunus breeding in the postgenomic era. Omics 16:268–283
McClure BA, Gray JE, Anderson MA, Clarke AE (1990) Self-incompatibility in Nicotiana alata involves degradation of pollen rRNA. Nature 347:757–760
McClure BA, Cruz-García F, Beecher BS, Sulaman W (2000) Factors affecting inter- and intra-specific pollen rejection in Nicotiana. Ann Bot 85:113–123
Michard E, Alves F, Feijó JA (2009) The role of ion fluxes in polarized cell growth and morphogenesis: the pollen tube as an experimental paradigm. Int J Dev Biol 53:1609–1622
Minamikawa MF, Koyano R, Kikuchi S, Koba T, Sassa H (2014) Identification of SFBB-containing canonical and noncanonical SCF complexes in pollen of apple (Malus × domestica). PLoS One 9:e97642
Mousavi S, Alisoltani A, Shiran B, Fallahi H, Imani A, Houshmand S (2014) De novo transcriptome assembly and comparative analysis of differentially expressed genes in Prunus dulcis Mill. in response to freezing stress. PLoS One 10:e104541
Murase K, Shiba H, Iwano M, Che FS, Watanabe M, Isogai A, Takayama S (2004) A membrane-anchored protein kinase involved in Brassica self-incompatibility signaling. Science 303:1516–1519
Neale AD, Wahleithner JA, Lund M, Bonnett HT, Kelly A, Meeks-Wagner DR, Peacock WJ, Dennis ES (1990) Chitinase, beta-1,3-glucanase, osmotin, and extensin are expressed in tobacco explants during flower formation. Plant Cell 2:673–684
Ortega E, Dicenta F (2003) Inheritance of self-compatibility in almond: breeding strategies to assure self-compatibility in the progeny. Theor Appl Genet 106:904–911
Ortega E, Dicenta F (2004) Suitability of four different methods to identify self-compatible seedlings in an almond breeding programme. J Hortic Sci Biotechnol 79:747–753
Ortega E, Egea J, Cánovas JA, Dicenta F (2002) Pollen tube dynamics following half- and fully-compatible pollinations in self-compatible almond cultivars. Sex Plant Reprod 15:47–51. https://doi.org/10.1007/s00497-002-0137-5
Ortega E, Martínez-Gómez PJ, Dicenta F, Egea J (2010) Disruption of endosperm development: an inbreeding effect in almond (Prunus dulcis). Sex Plant Reprod 23:135–140
Perikles S (2003) Q-Gene: processing quantitative real-time RT-PCR data. Bioinformatics 19:1439–1440
Qin X, Liu B, Soulard J, Morse D, Cappadocia M (2006) Style-by-style analysis of two sporadic self-compatible Solanum chacoense lines supports a primary role for S-RNases in determining pollen rejection thresholds. J Exp Bot 57:2001–2013
Qin P, Tu B, Wang Y, Deng L, Quilichini TD, Li T, Wang h MB, Li S (2013) ABCG15 encodes an ABC transporter protein, and is essential for post-meiotic anther and pollen exine development in rice. Plant Cell Physiol 54:138–154
Rasori A, Ruperti B, Bonghi C, Tonutti P, Ramina A (2002) Characterization of two putative ethylene receptor genes expressed during peach fruit development and abscission. J Exp Bot 53:2333–2339
Remy P (1953) Contribution a l’étude du pollen des arbres fruitiers a noyau, genre Prunus. Ann Amelior Plant 3:351–388
Rubio M, Ballester AR, Olivares PM, Castro de Moura M, Dicenta F, Martínez-Gómez P (2015a) Gene expression analysis of Plum pox virus (sharka) susceptibility/resistance in apricot (Prunus armeniaca L.). PLoS One 10(12):e0144670
Rubio M, Rodríguez-Moreno L, Ballester AR, Castro M, Bonghi C, Martínez-Gómez P (2015b) Analysis of gene expression changes in peach leaves in response to Plum pox virus infection using RNA-Seq. Mol Plant Pathol 16:164–176
Takasaki T, Hatakeyama K, Suzuki G, Watanabe M, Isogai A, Hinata K (2000) The S receptor kinase determines self-incompatibility in Brassica stigma. Nature 403:913–916
Takei N, Nakazaki T, Tsuchiya T, Kowyama Y, Ikehashi H (2000) Isolation and expression of a pistil-specific chitinase gene in rice (Oryza sativa L.). Breed Sci 50:225–228
Tao R, Iezzoni AF (2010) The S-RNase based gametophytic self-incompatibility system in Prunus exhibits distinct genetic and molecular features. Sci Hortic 124:423–433
Tong Z, Gao Z, Wang F, Zhou J, Zhang Z (2009) Selection of reliable reference genes for gene expression studies in peach using real-time PCR. BMC Mol Biol 10:71
Undergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3-new capabilities and interfaces. Nucleic Acids Res 40:e115
Ushijima K, Sassa H, Dandekar AM, Gradziel TM, Tao R, Hirano H (2003) Structural and transcriptional analysis of self-incompatibility locus of almond: identification of a pollen-expressed F-box gene with haplotype-specific polymorphism. Plant Cell 15:771–781
Verde I, Jenkins J, Dondini L, Micali S, Pagliarani G, Vendramin E, Paris R, Aramini V, Gazza L, Rossini L, Bassi D, Troggio M, Shu S, Grimwood J, Tartarini S, Dettori MT, Schmutz J (2017) The Peach v2.0 release: high-resolution linkage mapping and deep resequencing improve chromosome-scale assembly and contiguity. BMC Genomics 18:225
Wang L, Zhao S, Gu C, Zhou Y, Zhou H, Ma J, Cheng J, Han Y (2013) Deep RNA-Seq uncovers the peach transcriptome landscape. Plant Mol Biol 83:365–377
Watari A, Hanada T, Yamane H, Esumi T, Tao R, Yaegaki H, Yamaguchi M, Beppu K, Kataoka I (2007) A low transcriptional level of S e -RNase in the S e-haplotype confers self-compatibility in Japanese plum. J Am Soc Hortic Sci 132:396–406
Wei HR, Chen X, Zong XJ, Shu HR, Gao DS, Li QZ (2015) Comparative transcriptome analysis of genes involved in anthocyanin biosynthesis in the red and yellow fruits of sweet cherry (Prunus avium L.). PLoS One 10:e0121164
Wemmer T, Kaufmann H, Kirch H-H, Schneider K, Lottspeich F, Thompson RD (1994) The most abundant soluble basic protein of the stylar transmitting tract in potato (Solanum tuberosum L.) is an endochitinase. Planta 194:264–273
Wengier D, Valsecchi I, Cabanas ML, Tang WK, McCormick S, Muschietti J (2003) The receptor kinases LEPRK1 and LePRK2 associate in pollen and when expressed in yeast, but dissociate in the presence of style extract. Proc Natl Acad Sci U S A 100:6860–6865
Wingett SW, Andrews S. FastQ Screen (2018) A tool for multi-genome mapping and quality control. F1000Res. 2018 Aug 24 [revised 2018 Jan 1]; 7:1338. doi: https://doi.org/10.12688/f1000research.15931.2. eCollection
Zhang YJ, Zhao ZH, Xue YB (2009) Roles of proteolysis in plant self-incompatibility. Annu Rev Plant Biol 60:21–42
Zhang S, Ding F, He X, Luo C, Huang G, Hu Y (2015) Characterization of the ‘Xiangshui’ lemon transcriptome by the novo assembly to discover genes associated with self-incompatibility. Mol Gen Genomics 290:365–375
Zhang CC, Wang LY, Wei K, Wu LY, Li H-L, Zhang F, Hao Cheng H, Ni DJ (2016) Transcriptome analysis reveals self-incompatibility in the tea plant (Camellia sinensis) might be under gametophytic control. BMC Genomics 17:359. https://doi.org/10.1186/s12864-016-2703-5
Zhao P, Zhang L, Zhao L (2015) Dissection of the style’s response to pollination using transcriptome profiling in self-compatible (Solanum pimpinellifolium) and self-incompatible (Solanum chilense) tomato species. BMC Plant Biol 15:119
Zuriaga E, Muñoz-Sanz JV, Molina L, Gisbert AD, Badenes ML, Romero C (2013) An S-locus independent pollen factor confers self-compatibility in ‘Katy’ apricot. PLoS One 8:e53947
Acknowledgments
E.M. Gómez acknowledges the receipt of a FPI scholarship and a short stay scholarship both from MINECO.
Data archiving statement
RNA-Seq reads obtained have been deposited in the ArrayExpress database at EMBL-EBI (www.ebi.ac.uk/arrayexpress) under accession number E-MTAB-6164.
Funding
This work has been financially supported by the projects “Mejora Genética del Almendro” and “Breeding stone fruit species assisted by molecular tools” funded by “Ministerio de Economía y Competitividad” (MINECO) (grant AGL2013-48577-C2-1-R) and “Fundación Séneca” (grant 19879/GERM/15), respectively.
Author information
Authors and Affiliations
Contributions
EM Gómez designed RNA-Seq and RT-qPCR experiments, performed the experiments, analyzed the data and wrote the manuscript. M Buti analyzed the data and wrote the manuscript. DJ Sargent assisted in design of RNA-Seq and RT-qPCR experiments, and critically revised the contents and the English of the manuscript. F Dicenta coordinated the project. E Ortega conceived and coordinated the project, was involved in interpretation of data and wrote the manuscript.
Corresponding author
Additional information
Communicated by M. Wirthensohn
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Gómez, E.M., Buti, M., Sargent, D.J. et al. Transcriptomic analysis of pollen-pistil interactions in almond (Prunus dulcis) identifies candidate genes for components of gametophytic self-incompatibility. Tree Genetics & Genomes 15, 53 (2019). https://doi.org/10.1007/s11295-019-1360-7
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11295-019-1360-7

