Skip to main content
Log in

Monitoring the transition from endodormancy to ecodormancy in almond through the analysis and expression of a specific class III peroxidase gene

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

For fruit tree species, bud endodormancy is a crucial step, as its progression over winter determines the quality of blooming and the flowering time. Understanding the relationship between endodormancy, ecodormancy, and flowering processes is thus a fundamental goal in molecular biology studies of these species mainly in the present climate change and warming context. Knowing the molecular basis of the control of endodormancy and flowering will allow us to develop efficient selection tools like molecular markers for monitoring the process. In this 2-year study, to understand the transcriptional changes leading to the endodormancy release of flower buds, we cloned a candidate transcript and analysed its expression by qPCR in the flower buds of three almond (Prunus dulcis (Miller) Webb) cultivars with different endodormancy period lengths and flowering times. The candidate transcript, named PdP40, has been described as a member of the flower-specific class III peroxidase family. Expression results highlight a significant increase in the transcript levels of this gene before endodormancy release in the three cultivars assayed, independent of the endodormancy period. Furthermore, total peroxidase activity was analysed in flower bud samples. Results suggest an important role for this peroxidase in this process and the possibility of using it as an expression marker for predicting endodormancy release in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bai S, Saito T, Sakamoto D, Ito A, Fujii H, Moriguchi T (2013) Transcriptome analysis of Japanese pear (Pyrus pyrifolia Nakai) flower buds transitioning through Endodormancy. Plant Cell Physiol 54:1132–1151

    Article  CAS  Google Scholar 

  • Baldermann S, Homann T, Neugart S, Chmielewski FM, Götz KP, Gödeke K, Rawel H (2018) Selected plant metabolites involved in oxidation-reduction processes during bud dormancy and ontogenetic development in sweet cherry buds (Prunus avium L.). Molecules 23:1197

    Article  Google Scholar 

  • Barba-Espin G, Díaz-Vivancos P, Clemente-Moreno MJ, Albacete A, Faize L, Faize M, Perez-Alfocea F, Hernandez JA (2010) Interaction between hydrogen peroxide and plant hormones during germination and the early growth of pea seedlings. Plant Cell Environ 33:981–994

    Article  CAS  Google Scholar 

  • Barros PM, Gonçalves N, Saibo NJM, Oliveira MM (2012) Functional characterization of two almond C-repeat-binding factors involved in cold response. Tree Physiol 32:1113–1128

    Article  CAS  Google Scholar 

  • Barros PM, Cherian S, Costa M, Sapeta H, Saibo NJM, Oliveira MM (2017) The identification of almond GIGANTEA gene and its expression under cold stress, variable photoperiod, and seasonal dormancy. Biol Plant 61:631–640

    Article  CAS  Google Scholar 

  • Beauvieux R, Wenden B, Dirlewanger E (2018) Bud dormancy in perennial fruit tree species: a pivotal role for oxidative cues. Front Plant Sci 9:657

    Article  Google Scholar 

  • Benkert P, Biasini M, Schwede T (2011) Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 27:343–350

    Article  CAS  Google Scholar 

  • Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Cassarino TG, Bertoni M, Bordoli L, Schwede T (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42:252–258

    Article  Google Scholar 

  • Bielenberg DG, Rauh B, Fan S, Gasic K, Abbott AG, Reighard GL, Okie WR, Wells CE (2015) Genotyping by sequencing for SNP-based linkage map construction and QTL analysis of chilling requirements and bloom date in peach [Prunus pérsica (L.) Batsch]. PLoS One 10:e0139406

    Article  Google Scholar 

  • Campoy JA, Ruiz D, Egea J (2011a) Dormancy in temperate fruit trees in a global warming context: a review. Scientia Hort 130:357–372

    Article  Google Scholar 

  • Campoy JA, Ruiz D, Egea J, Rees J, Celton JM, Martínez-Gómez P (2011b) Inheritance of flowering time in apricot (Prunus armeniaca L.) and analysis of linked quantitative trait loci (QTLs) using simple sequence repeat markers. Plant Mol Biol Report 29:404–410

    Article  CAS  Google Scholar 

  • Castède S, Campoy JA, Quero-García J, Le Dantec L, Lafargue M, Barreneche T, Wenden B, Dirlewanger E (2014) Genetic determinism of phenological traits highly affected by climate change in Prunus avium: flowering date dissected into chill and heat requirements. New Phytol 202:703–715

    Article  Google Scholar 

  • Castède S, Campoy JA, Le Dantec L, Quero-García J, Barreneche T, Wenden B, Dirlewanger E (2015) Mapping of candidate genes involved in bud dormancy and flowering time in sweet cherry (Prunus avium). PLoS One 10:e0143250

    Article  Google Scholar 

  • Chen D, Ding Y, Guo Zhang T (2009) Molecular cloning and characterization of a flower-specific class III peroxidase gene in G. Hirsutum. Mol Biol Rep 36:461–469

    Article  CAS  Google Scholar 

  • Clemente-Moreno MJ, Piqueras A, Hernández JA (2011) Implication of peroxidase activity in development of healthy and PPV-infected micropropagated GF305 peach plants. Plant Growth Regul 65:359–367

    Article  CAS  Google Scholar 

  • Del Cueto J, Ionescu IA, Pičmanová M, Gericke O, Motawia MS, Olsen CE, Sánchez-Pérez R (2017) Cyanogenic glucosides and derivatives in almond and sweet cherry flower buds from dormancy to flowering. Front Plant Sci 8:800

    Article  Google Scholar 

  • Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Gascuel O (2008) Phylogeny. fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:W465–W469

    Article  CAS  Google Scholar 

  • Díaz-Vivancos P, Barba-Espín G, Clemente-Moreno MJ, Hernández JA (2010) Characterization of the antioxidant system during the vegetative development of pea plants. Biol Plant 54:76–82

    Article  Google Scholar 

  • Díaz-Vivancos P, Barba-Espín G, Hernández JA (2013) Elucidating hormonal/ROS networks during seed germination: insights and perspectives. Plant Cell Rep 32:1491–1502

    Article  Google Scholar 

  • Dicenta F, Sánchez-Pérez P, Batlle I, Martínez-Gómez P (2017) Late-blooming almond cultivar development. In: R. Socias i Company, Gradizel TM (eds) Almond: Botany, production and uses. Editorial CABI, Boston (EEUU), pp 168–187

    Chapter  Google Scholar 

  • Erez A (1995) Means to compensate for insufficient chilling to improve bloom and leafing. Acta Hortic (395):81–95

  • Egea J, Ortega E, Martínez-Gómez P, Dicenta F (2003) Chilling and heat requirements of almond cultivars for flowering. Environ Exp Bot 50:79–85

    Article  Google Scholar 

  • Fadón E, Rodrigo J (2018) Unveiling winter dormancy through empirical experiments. Environ Exp Bot 152:28–36

    Article  Google Scholar 

  • Fan S, Bielenberg DG, Zhebentyayeva TN, Reighard GL, Okie WR, Holland D, Abbott AG (2010) Mapping quantitative trait loci associated with chilling requirement, heat requirement and bloom date in peach (Prunus persica). New Phytol 185:917–930

    Article  Google Scholar 

  • Felipe AJ (1977) Phenological states of almond. Proceedings of the Third GREMPA Colloquium, Bari, Italy:101–103

  • Faust M, Erez A, Rowland LJ, Wang SY, Norman HA (1997) Bud dormancy in perennial fruit trees: physiological basis for dormancy induction, maintenance and release. J Am Soc Hortic Sci 32:62–629

    Google Scholar 

  • Foyer CH, López-Delgado H, Dat JF, Scott IM (1997) Hydrogen peroxide- and glutathione-associated mechanisms of acclimatory stress tolerance and signalling. Physiol Plant 100:241–254

    Article  CAS  Google Scholar 

  • Gholizadeh J, Sadeghipour HR, Abdolzadeh A, Hemmati K, Hassani D, Vahdati K (2017) Redox rather than carbohydrate metabolism differentiates endodormant lateral buds in walnut cultivars with contrasting chilling requirements. Sci Hortic 225:29–37

    Article  CAS  Google Scholar 

  • Halaly T, Pang X, Batikoff T, Crane O, Keren A, Venkateswari J, Or E (2008) Similar mechanisms might be triggered by alternative external stimuli that induce dormancy release in grape buds. Planta 228:79–88

    Article  CAS  Google Scholar 

  • Hanninen H, Tanino K (2011) Tree seasonality in a warming climate. Trends Plant Sci 16:412–416

    Article  Google Scholar 

  • Hedley PE, Russell JR, Jorgensen L, Gordon S, Morris JA, Hackett CA, Brennan R (2010) Candidate genes associated with bud dormancy release in blackcurrant (Ribes nigrum L.). BMC Plant Biol 10:202

    Article  Google Scholar 

  • Hiraga S, Sasaki K, Ito H, Ohashi Y, Matsui H (2001) A large family of class III plant peroxidases. Plant Cell Physiol 42(5):462–468

    Article  CAS  Google Scholar 

  • Horvath DP, Chao WS, Suttle JC, Thimmapuram J, Anderson JV (2008) Transcriptome analysis identifies novel responses and potential regulatory genes involved in seasonal dormancy transitions of leafy spurge (Euphorbia esula L.). BMC Genomics 9(1):536. https://doi.org/10.1186/1471-2164-9-536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horvath D (2009) Common mechanisms regulate flowering and dormancy. Plant Sci 177:523–531

    Article  CAS  Google Scholar 

  • Hernández Mora JR, Micheletti M, Bink D, Van de Weg E, Cantín C, Nazzicari N, Caprera A, Dettori MT, Micali S, Banchi E, Campoy JA, Dirlewanger E, Lambert P, Pascal T, Troggio M, Bassi D, Rossini L, Verde I, Quilot-Turion B, Laurens F, Arús P, Aranzana MJ (2017) Integrated QTL detection for key breeding traits in multiple peach progenies. BMC Genomics 18:404

    Article  Google Scholar 

  • Ionescu IA, Moller BL, Sánchez-Pérez R (2017a) Chemical control of flowering time. J Exp Bot 68:369–382

    CAS  PubMed  Google Scholar 

  • Ionescu IA, López-Ortega G, Burow M, Bayo-Canha A, Junge A, Gericke O, Moller BL, Sánchez-Pérez R (2017b) Transcriptome and metabolite changes during hydrogen cyanamide-induced floral bud break in sweet cherry. Front Plant Sci 68:369–382

    CAS  Google Scholar 

  • Kuroda H, Sugiura T, Ito D (2002) Changes in hydrogen peroxide content in flower buds of Japanese pear (Pyrus pyrifolia Nakai) in relation to breaking of endodormancy. J Japan Soc Hort Sci 71:610–616

    Article  CAS  Google Scholar 

  • Lang BA, Early JD, Martin GC, Darnell RL (1987) Endo-, para-, and eco-dormancy physiological terminology and classification for dormancy research. Hortic Sci 22:371–377

    Google Scholar 

  • Le Provost G, Herrera R, Paiva JA, Chaumeil P, Salin F, Plomion C (2007) A micromethod for high throughput RNA extraction in forest trees. Biol Res 40:291–297

    Article  Google Scholar 

  • Leida C, Terol J, Martí G, Agustí M, Llácer G, Badenes ML (2010) Identification of genes associated with bud dormancy release in Prunus persica by suppression subtractive hybridization. Tree Physiol 30:655–666

    Article  CAS  Google Scholar 

  • Leida C, Conesa A, Llácer G, Badenes ML, Ríos G (2012) Histone modifications and expression of DAM6 gene in peach are modulated during bud dormancy release in a cultivar-dependent manner. New Phytol 193:67–80

    Article  CAS  Google Scholar 

  • Liu Y, Ye N, Liu R, Chen M, Zhang J (2010) H202 mediates the regulation of ABA catabolism and GA biosynthesis in Arabidopsis seed dormancy and germination. J Exp Bot 61:2979–2990

    Article  CAS  Google Scholar 

  • Luedeling E, Girvetz EH, Semenov MA, Brown PH (2011) Climate change affects winter chill for temperate fruit and nut trees. PLoS One 6:e20155

    Article  CAS  Google Scholar 

  • Mazzitelli L, Hancock RD, Haupt S, Walker PG, Pont SDA, McNicol J, Taylor MA (2007) Co-ordinated gene expression during phases of dormancy release in raspberry (Rubus idaeus L.) buds. J Exp Bot 58:1035–1045

    Article  CAS  Google Scholar 

  • Martínez-Gómez P, Prudencio AS, Gradziel TM, Dicenta F (2017) The delay of 405 flowering time in almond: a review of the combined effect of adaptation, 406 mutation and breeding. Euphytica 213:197

    Article  Google Scholar 

  • Mika A, Minibayeva F, Beckett R, Lüthje S (2004) Possible functions of extracellular peroxidases in stress-induced generation and detoxification of active oxygen species. Phytochem Rev 3:173–193

    Article  CAS  Google Scholar 

  • Nielsen KL, Indiani C, Henriksen A, Feis A, Becucci M, Gajhede M, Smulevich G, Welinder KG (2001) Differential activity and structure of highly similar peroxidases. Spectroscopic, crystallographic, and enzymatic analyses of lignifying Arabidopsis thaliana peroxidase A2 and horseradish peroxidase A2. Biochemistry 40:11013–11021

    Article  CAS  Google Scholar 

  • Olukolu B, Trainin T, Fan S, Kole C, Bielenberg D, Reighard G, Abbott A, Holland D (2009) Genetic linkage mapping for molecular dissection of chilling requirement and budbreak in apricot (Prunus armeniaca L.) http://sauwok.fecyt.es/apps/full_record.do?product=UA&search_mode=GeneralSearch&qid=1&SID=Q2Lg@2DH@DB8dibf8ng&page=1&doc=1&colname=WOS. Genome 52:819–828

    Article  CAS  Google Scholar 

  • Or E, Vilozny I, Eyal Y, Ogrodovitch A (2000) The transduction of the signal for grape bud dormancy breaking induced by hydrogen cyanimide may involve the SNF-like protein kinase GDBRPK. Plant Mol Biol 43:483–494

    Article  CAS  Google Scholar 

  • Pacey-Miller T, Scott K, Ablett E, Tingey S, Ching A, Henry R (2003) Genes associated with the end of dormancy in grapes. Funct Integra Gen 3:144–152

    Article  CAS  Google Scholar 

  • Pérez FJ, Lira W (2005) Possible role of catalase in post-dormancy bud break in grapevines. J Plant Physiol 162:301–308

    Article  Google Scholar 

  • Pérez FJ, Vergara R, Rubio S (2008) H2O2 is involved in the dormancy-breaking effect of hydrogen cyanimide in grapevine buds. Plant Growth Regul 55:149–155

    Article  Google Scholar 

  • Pomar F, Caballero N, Pedreño MA, Ros-Barceló A (2002) H2O2 generation during the auto-oxidation of coniferyl alcohol drives the oxidase activity of a highly conserved class III peroxidase involved in lignin biosynthesis. FEBS Lett 529:198–202

    Article  CAS  Google Scholar 

  • Prudencio AS, Martínez-Gómez P, Dicenta F (2018) Evaluation of breaking dormancy, flowering and productivity of extra-late and ultra-late flowering almond cultivars during cold and warm seasons in South-East of Spain. Scientia Hort 235:39–46

    Article  Google Scholar 

  • Petersen TN, Brunak S, von Heijne G, Nielsen J (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature Meth 8:785–786

    Article  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29:45

    Article  Google Scholar 

  • Romeu JF, Monforte AJ, Sánchez G, Granell A, García-Brunton J, Badenes ML, Ríos G (2014) Quantitative trait loci affecting reproductive phenology in peach. BMC Plant Biol 14:52

    Article  Google Scholar 

  • Ros-Barceló A (1998) The generation of H2O2 in the xylem of Zinnia elegans is mediated by an NADPH-oxidase-like enzyme. Planta 207:207–216

    Article  Google Scholar 

  • Ruiz D, Campoy JA, Egea J (2007) Chilling and heat requirements of apricot cultivars for flowering. Environ Exp Bot 61:254–263

    Article  Google Scholar 

  • Salazar JA, Ruiz D, Campoy JA, Tartarini S, Dondini L, Martínez-Gómez P (2016) Inheritance of reproductive phenology traits and related QTL identification in apricot. Tree Genet Genomes 12:71

    Article  Google Scholar 

  • Sánchez-Pérez R, Dicenta F, Martínez-Gómez P (2004) Identification of S-alleles in almond using multiplex PCR. Euphytica 138:263–269

    Article  Google Scholar 

  • Sánchez-Pérez R, Howad D, Dicenta F, Arús P, Martínez-Gómez P (2007) Mapping major genes and quantitative trait loci controlling agronomic traits in almond. Plant Breed 126:310–318

    Article  Google Scholar 

  • Sánchez-Pérez R, Del Cueto J, Dicenta F, Martínez-Gómez P (2014) Recent advancements to study flowering time in almond and other Prunus species. Front Plant Sci 5:334

    PubMed  PubMed Central  Google Scholar 

  • Socias i Company R, Felipe AJ, Gómez-Aparisi J (1999) A major gene for flowering time in almond. Plant Breed 118:443–448

    Article  Google Scholar 

  • Sudawan B, Chang CS, Chao HF, Ku MSB, Yen YF (2016) Hydrogen cyanamide breaks grapevine bud dormancy in the summer through transient activation of gene expression and accumulation of reactive oxygen and nitrogen species. BMC Plant Biol 16:202–220

    Article  Google Scholar 

  • Takemura Y, Kuroki K, Jiang M, Matsumoto K, Tamura F (2015) Identification of the expressed protein and the impact of change in ascorbate peroxidase activity related to endodormancy breaking in Pyrus pyrifolia. Plant Physiol Biochem 86:121–129

    Article  CAS  Google Scholar 

  • Tong Z, Gao Z, Wang F, Zhou J, Zang Z (2009) Selection of reliable reference genes for gene expression studies in peach using real-time PCR. BMC Mol Biol 10:71–84

    Article  Google Scholar 

  • Verde I, Jenkins J, Dondini L, Micali S, Pagliarani G, Vendramin E, Paris R, Aramini V, Gazza L, Rossini L, Bassi D, Troggio M, Shu S, Grimwood J, Tartarini S, Dettori MT, Schmutz J (2017) The Peach v2.0 release: high-resolution linkage mapping and deep resequencing improve chromosome-scale assembly and contiguity. BMC Genet 18:225

    Article  Google Scholar 

  • Wang SY, Faust M (1994) Changes in the antioxidant system associated with budbreak in anna apple (Malus domestica Borkh) buds. J Amer Soc Hort Sci 119:735–741

    Article  CAS  Google Scholar 

  • Welinder KG (1992) Superfamily of plant, fungal and bacterial peroxidases. Curr Opin Struct Biol 2:388–393

    Article  CAS  Google Scholar 

  • Zhu Y, Li Y, Xin D, Chen W, Shao X, Wang Y, Guo W (2015) RNA-Seq-based transcriptome analysis of dormant flower buds of Chinese cherry (Prunus pseudocerasus). Gene 555:362–376

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the ‘Almond breeding’ projects of the Spanish Ministry of Economy and Competiveness and the ‘Breeding stone fruit species assisted by molecular tools’ project of the Fundación Séneca of the Region of Murcia (19879/GERM/15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Martínez-Gómez.

Additional information

Communicated by M. Wirthensohn

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Table S1

PdP40 homologue proteins described in different plants species including NCBI accession, description and species. (XLSX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prudencio, A.S., Díaz-Vivancos, P., Dicenta, F. et al. Monitoring the transition from endodormancy to ecodormancy in almond through the analysis and expression of a specific class III peroxidase gene. Tree Genetics & Genomes 15, 44 (2019). https://doi.org/10.1007/s11295-019-1351-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-019-1351-8

Keywords

Navigation