Genetic variation and signatures of natural selection in populations of European beech (Fagus sylvatica L.) along precipitation gradients

Abstract

European beech (Fagus sylvatica L.) is one of the most important forest tree species in Europe, and its genetic adaptation potential to climate change is of great interest. Saplings and adults from 12 European beech populations were sampled along two steep precipitation gradients in Switzerland. All individuals were genotyped at 13 microsatellite or simple sequence repeat (SSR) markers and 70 single nucleotide polymorphisms (SNPs) in 24 candidate genes potentially involved in stress response and phenology. Both SSR and SNP markers revealed high genetic diversity in the studied populations and low but statistically significant population differentiation. The SNPs were searched for FST outliers using three different methods implemented in LOSITAN, Arlequin, and BayeScan, respectively. Additionally, associations of the SNPs with environmental variables were tested by two methods implemented in Bayenv2 and Samβada, respectively. There were 14 (20%) SNPs in 12 (50%) candidate genes in the saplings and 9 (12.8%) SNPs in 7 (29.2%) candidate genes in the adults consistently identified by at least two of the five methods used, indicating that they are very likely under selection. Genes with SNPs showing signatures of selection are involved in a wide range of molecular functions, such as oxidoreductases (IDH), hydrolases (CysPro), transferases (XTH), transporters (KT2), chaperones (CP10), and transcription factors (DAG, NAC transcription factor). The obtained data will help us better understand the genetic variation underlying adaptation to environmentally changing conditions in European beech, which is of great importance for the development of scientific guidelines for the sustainable management and conservation of this important species.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Ahrens CW, Rymer PD, Stow A, Bragg J, Dillon S, Umbers KDL, Dudaniec RY (2018) The search for loci under selection: trends, biases and progress. Mol Ecol 27:1342–1356. https://doi.org/10.1111/mec.14549

    Article  PubMed  Google Scholar 

  2. Aitken SN, Yeaman S, Holliday JA, Wang T, Curtis-McLane S (2008) Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol Appl 1:95–111. https://doi.org/10.1111/j.1752-4571.2007.00013.x

    Article  PubMed  PubMed Central  Google Scholar 

  3. Alberto FJ, Derory J, Boury C, Frigerio J-M, Zimmermann NE, Kremer A (2013) Imprints of natural selection along environmental gradients in phenology-related genes of Quercus petraea. Genetics 195:495–512. https://doi.org/10.1534/genetics.113.153783

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim J-H, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–684. https://doi.org/10.1016/j.foreco.2009.09.001

    Article  Google Scholar 

  5. Alvarez N, Thiel-Egenter C, Tribsch A, Holderegger R, Manel S, Schönswetter P, Taberlet P, Brodbeck S, Gaudeul M, Gielly L, Küpfer P, Mansion G, Negrini R, Paun O, Pellecchia M, Rioux D, Schüpfer F, Van Loo M, Winkler M, Gugerli F, IntraBioDiv Consortium (2009) History or ecology? Substrate type as a major driver of spatial genetic structure in Alpine plants. Ecol Lett 12:632–640. https://doi.org/10.1111/j.1461-0248.2009.01312.x

    Article  PubMed  Google Scholar 

  6. Antao T, Lopes A, Lopes RJ, Beja-Pereira A, Luikart G (2008) LOSITAN: a workbench to detect molecular adaptation based on a F ST-outlier method. BMC Bioinformatics 9:323. https://doi.org/10.1186/1471-2105-9-323

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M, Martin MJ, Natale DA, O’Donovan C, Redaschi N, Yeh L-SL (2004) UniProt: the universal protein knowledgebase. Nucleic Acids Res 32:D115–D119. https://doi.org/10.1093/nar/gkh131

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Arend M, Gessler A, Schaub M (2016) The influence of the soil on spring and autumn phenology in European beech. Tree Physiol 36(1):78–85. https://doi.org/10.1093/treephys/tpv087

    Article  PubMed  Google Scholar 

  9. Asuka Y, Tani N, Tsumura Y, Tomaru N (2004) Development and characterization of microsatellite markers for Fagus crenata Blume. Mol Ecol Notes 4:101–103. https://doi.org/10.1046/j.1471-8286.2003.00583.x

    CAS  Article  Google Scholar 

  10. Balding DJ (2006) A tutorial on statistical methods for population association studies. Nat Rev Genet 7:781–791. https://doi.org/10.1038/nrg1916

    CAS  Article  PubMed  Google Scholar 

  11. Barrett LW, Fletcher S, Wilton SD (2012) Regulation of eukaryotic gene expression by the untranslated gene regions and other non-coding elements. Cell Mol Life Sci 69:3613–3634. https://doi.org/10.1007/s00018-012-0990-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Baruck J, Nestroy O, Sartori G, Baize D, Traidl R, Vrščaj B, Bräm E, Gruber FE, Heinrich K, Geitner C (2016) Soil classification and mapping in the Alps: the current state and future challenges. Geoderma 264(Part B):312–331. https://doi.org/10.1016/j.geoderma.2015.08.005

    CAS  Article  Google Scholar 

  13. Beaumont MA, Nichols RA (1996) Evaluating loci for use in the genetic analysis of population structure. Proc R Soc Lond B Biol Sci 263:1619–1626. https://doi.org/10.1098/rspb.1996.0237

    Article  Google Scholar 

  14. Begueria S, Vicente-Serrano SM (2017) SPEI: calculation of the standardised precipitation-evapotranspiration index. R package version 1.7 (https://cran.r-project.org/web/packages/SPEI)

  15. Belmonte J, Alarcón M, Avila A, Scialabba E, Pino D (2008) Long-range transport of beech (Fagus sylvatica L.) pollen to Catalonia (north-eastern Spain). Int J Biometeorol 52:675–687. https://doi.org/10.1007/s00484-008-0160-9

    CAS  Article  PubMed  Google Scholar 

  16. Beniston M, Goyette S (2007) Changes in variability and persistence of climate in Switzerland: exploring 20th century observations and 21st century simulations. Glob Planet Chang 57:1–15. https://doi.org/10.1016/j.gloplacha.2006.11.004

    Article  Google Scholar 

  17. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57(1):289–300

    Google Scholar 

  18. Blair LM, Granka JM, Feldman MW (2014) On the stability of the Bayenv method in assessing human SNP-environment associations. Hum Genomics 8(1). https://doi.org/10.1186/1479-7364-8-1

  19. Bontemps A, Klein EK, Oddou-Muratorio S (2013) Shift of spatial patterns during early recruitment in Fagus sylvatica: evidence from seed dispersal estimates based on genotypic data. For Ecol Manag 305:67–76. https://doi.org/10.1016/j.foreco.2013.05.033

    Article  Google Scholar 

  20. Bugmann H, Brang P, Elkin C, Henne P, Jakoby O, Lévesque M, Lischke H, Psomas A, Rigling A, Wermelinger B, Zimmermann NE (2014) Climate change impacts on tree species, forest properties, and ecosystem services. Chapter 8 in Appenzeller C, Fischer EM, Fuhrer J, Grosjean M, Hohmann R, Joos F, Raible C, Ritz C (Coordinating Group). CH2014-Impacts. Toward quantitative scenarios of climate change impacts in Switzerland. OCCR, FOEN, MeteoSwiss, C2SM, Agroscope, and ProClim, Bern, pp 79–88

  21. Buiteveld J, Vendramin GG, Leonardi S, Kamer K, Geburek T (2007) Genetic diversity and differentiation in European beech (Fagus sylvatica L.) stands varying in management history. For Ecol Manag 247:98–106. https://doi.org/10.1016/j.foreco.2007.04.018

    Article  Google Scholar 

  22. Chamary JV, Parmley JL, Hurst LD (2006) Hearing silence: non-neutral evolution at synonymous sites in mammals. Nat Rev Genet 7:98–108. https://doi.org/10.1038/nrg1770

    CAS  Article  PubMed  Google Scholar 

  23. Chmura DJ, Anderson PD, Howe GT, Harrington CA, Halofsky JE, Peterson DL, Shaw DC, Clair JBS (2011) Forest responses to climate change in the northwestern United States: ecophysiological foundations for adaptive management. For Ecol Manag 261:1121–1142. https://doi.org/10.1016/j.foreco.2010.12.040

    Article  Google Scholar 

  24. Christmas MJ, Biffin E, Breed MF, Lowe AJ (2016) Finding needles in a genomic haystack: targeted capture identifies clear signatures of selection in a non-model plant species. Mol Ecol 25:4216–4233. https://doi.org/10.1111/mec.13750

    CAS  Article  PubMed  Google Scholar 

  25. Coop G, Witonsky D, Rienzo AD, Pritchard JK (2010) Using environmental correlations to identify loci underlying local adaptation. Genetics 185:1411–1423. https://doi.org/10.1534/genetics.110.114819

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Crookston NL, Rehfeldt GE, Dixon GE, Weiskittel AR (2010) Addressing climate change in the forest vegetation simulator to assess impacts on landscape forest dynamics. For Ecol Manag 260:1198–1211. https://doi.org/10.1016/j.foreco.2010.07.013

    Article  Google Scholar 

  27. Csilléry K, Lalagüe H, Vendramin GG, González-Martínez SC, Fady B, Oddou-Muratorio S (2014) Detecting short spatial scale local adaptation and epistatic selection in climate-related candidate genes in European beech (Fagus sylvatica) populations. Mol Ecol 23:4696–4708. https://doi.org/10.1111/mec.12902

    CAS  Article  PubMed  Google Scholar 

  28. Cushman SA, Landguth EL (2010) Spurious correlations and inference in landscape genetics. Mol Ecol 19:3592–3602. https://doi.org/10.1111/j.1365-294X.2010.04656.x

    Article  PubMed  Google Scholar 

  29. De Mita S, Thuillet A-C, Gay L, Ahmadi N, Manel S, Ronfort J, Vigouroux Y (2013) Detecting selection along environmental gradients: analysis of eight methods and their effectiveness for outbreeding and selfing populations. Mol Ecol 22:1383–1399. https://doi.org/10.1111/mec.12182

    Article  PubMed  PubMed Central  Google Scholar 

  30. De Villemereuil P, Frichot É, Bazin É, François O, Gaggiotti OE (2014) Genome scan methods against more complex models: when and how much should we trust them? Mol Ecol 23:2006–2019. https://doi.org/10.1111/mec.12705

    Article  PubMed  Google Scholar 

  31. Dell Inc (2015) Dell Statistica (data analysis software system), version 12. software.dell.com

  32. Ding K, Zhang J, Zhou K, Shen Y, Zhang X (2005) htSNPer1.0: software for haplotype block partition and htSNPs selection. BMC Bioinformatics 6:38. https://doi.org/10.1186/1471-2105-6-38

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Durand J, Bodénès C, Chancerel E, Frigerio J-M, Vendramin G, Sebastiani F, Buonamici A, Gailing O, Koelewijn H-P, Villani F, Mattioni C, Cherubini M, Goicoechea PG, Herrán A, Ikaran Z, Cabané C, Ueno S, Alberto F, Dumoulin P-Y, Guichoux E, de DA, Kremer A, Plomion C (2010) A fast and cost-effective approach to develop and map EST-SSR markers: oak as a case study. BMC Genomics 11:570. https://doi.org/10.1186/1471-2164-11-570

    Article  PubMed  PubMed Central  Google Scholar 

  34. Earl DA, von Holdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361. https://doi.org/10.1007/s12686-011-9548-7

    Article  Google Scholar 

  35. Eckert AJ, Bower AD, Wegrzyn JL, Pande B, Jermstad KD, Krutovsky KV, Clair JBS, Neale DB (2009) Association genetics of coastal Douglas fir (Pseudotsuga menziesii var. menziesii, Pinaceae). I. Cold-hardiness related traits. Genetics 182:1289–1302. https://doi.org/10.1534/genetics.109.102350

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Eckert AJ, Bower AD, González-Martínez SC, Wegrzyn JL, Coop G, Neale DB (2010a) Back to nature: ecological genomics of loblolly pine (Pinus taeda, Pinaceae). Mol Ecol 19:3789–3805. https://doi.org/10.1111/j.1365-294X.2010.04698.x

    CAS  Article  PubMed  Google Scholar 

  37. Eckert AJ, van Heerwaarden J, Wegrzyn JL, Nelson CD, Ross-Ibarra J, González-Martínez SC, Neale DB (2010b) Patterns of population structure and environmental associations to aridity across the range of loblolly pine (Pinus taeda L., Pinaceae). Genetics 185:969–982. https://doi.org/10.1534/genetics.110.115543

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Ellenberg H (1988) Vegetation ecology of central Europe. Cambridge University Press, Cambridge

    Google Scholar 

  39. Ellis JR, Burke JM (2007) EST-SSRs as a resource for population genetic analyses. Heredity 99:125–132. https://doi.org/10.1038/sj.hdy.6801001

    CAS  Article  PubMed  Google Scholar 

  40. Emiliani G, Paffetti D, Vettori C, Giannini R (2004) Geographic distribution of genetic variability of Fagus sylvatica L. in southern Italian populations. For Genet Slovak Repub 11(3–4):231–237

    CAS  Google Scholar 

  41. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x

    CAS  Article  Google Scholar 

  42. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x

    Article  PubMed  PubMed Central  Google Scholar 

  43. Excoffier L, Hofer T, Foll M (2009) Detecting loci under selection in a hierarchically structured population. Heredity 103:285–298. https://doi.org/10.1038/hdy.2009.74

    CAS  Article  PubMed  Google Scholar 

  44. Fang J, Lechowicz MJ (2006) Climatic limits for the present distribution of beech (Fagus L.) species in the world. J Biogeogr 33:1804–1819. https://doi.org/10.1111/j.1365-2699.2006.01533.x

    Article  Google Scholar 

  45. Fischer MC, Rellstab C, Leuzinger M, Roumet M, Gugerli F, Shimizu KK, Shimizu KK, Holderegger R, Widmer A (2017) Estimating genomic diversity and population differentiation—an empirical comparison of microsatellite and SNP variation in Arabidopsis halleri. BMC Genomics 18:69. https://doi.org/10.1186/s12864-016-3459-7

    Article  PubMed  PubMed Central  Google Scholar 

  46. Foll M, Gaggiotti O (2008) A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180:977–993. https://doi.org/10.1534/genetics.108.092221

    Article  PubMed  PubMed Central  Google Scholar 

  47. Fu W, Akey JM (2013) Selection and adaptation in the human genome. Annu Rev Genomics Hum Genet 14:467–489. https://doi.org/10.1146/annurev-genom-091212-153509

    CAS  Article  PubMed  Google Scholar 

  48. Fyon F, Cailleau A, Lenormand T (2015) Enhancer runaway and the evolution of diploid gene expression. PLoS Genet 11:e1005665. https://doi.org/10.1371/journal.pgen.1005665

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. Gärtner S, Reif A, Xystrakis F, Sayer U, Bendagha N, Matzarakis A (2008) The drought tolerance limit of Fagus sylvatica forest on limestone in southwestern Germany. J Veg Sci 19:757–768. https://doi.org/10.3170/2008-8-18442

    Article  Google Scholar 

  50. Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486

    Article  Google Scholar 

  51. Grivet D, Sebastiani F, Alía R, Bataillon T, Torre S, Zabal-Aguirre M, Vendramin GG, González-Martínez SC (2011) Molecular footprints of local adaptation in two Mediterranean conifers. Mol Biol Evol 28:101–116. https://doi.org/10.1093/molbev/msq190

    CAS  Article  PubMed  Google Scholar 

  52. Günther T, Coop G (2013) Robust identification of local adaptation from allele frequencies. Genetics 195(1):205–220. https://doi.org/10.1534/genetics.113.152462

    Article  PubMed  PubMed Central  Google Scholar 

  53. Holderegger R, Kamm U, Gugerli F (2006) Adaptive vs. neutral genetic diversity: implications for landscape genetics. Landsc Ecol 21:797–807. https://doi.org/10.1007/s10980-005-5245-9

    Article  Google Scholar 

  54. Holderegger R, Buehler D, Gugerli F, Manel S (2010) Landscape genetics of plants. Trends Plant Sci 15:675–683. https://doi.org/10.1016/j.tplants.2010.09.002

    CAS  Article  PubMed  Google Scholar 

  55. Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332. https://doi.org/10.1111/j.1755-0998.2009.02591.x

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ingvarsson PK, Street NR (2011) Association genetics of complex traits in plants. New Phytol 189:909–922. https://doi.org/10.1111/j.1469-8137.2010.03593.x

    Article  PubMed  PubMed Central  Google Scholar 

  57. Jahn G (1991) Temperate deciduous forests. In: Röhrig E, Ulrich B (eds) Ecosystems of the world. Elsevier, Amsterdam, pp 377–502

    Google Scholar 

  58. Jeffreys H (1961) Theory of probability, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  59. Jump AS, Peñuelas J (2007) Extensive spatial genetic structure revealed by AFLP but not SSR molecular markers in the wind-pollinated tree, Fagus sylvatica. Mol Ecol 16:925–936. https://doi.org/10.1111/j.1365-294X.2006.03203.x

    CAS  Article  PubMed  Google Scholar 

  60. Jump AS, Hunt JM, Martínez-Izquierdo JA, Peñuelas J (2006) Natural selection and climate change: temperature-linked spatial and temporal trends in gene frequency in Fagus sylvatica. Mol Ecol 15:3469–3480. https://doi.org/10.1111/j.1365-294X.2006.03027.x

    CAS  Article  PubMed  Google Scholar 

  61. Kalinowski ST (2005) hp-rare 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189. https://doi.org/10.1111/j.1471-8286.2004.00845.x

    CAS  Article  Google Scholar 

  62. Kirk H, Freeland JR (2011) Applications and implications of neutral versus non-neutral markers in molecular ecology. Int J Mol Sci 12:3966–3988. https://doi.org/10.3390/ijms12063966

    Article  PubMed  PubMed Central  Google Scholar 

  63. Komar AA (2007) Genetics. SNPs, silent but not invisible. Science 315:466–467. https://doi.org/10.1126/science.1138239

    CAS  Article  PubMed  Google Scholar 

  64. Konijnendijk N, Shikano T, Daneels D, Volckaert FAM, Raeymaekers JAM (2015) Signatures of selection in the three-spined stickleback along a small-scale brackish water–freshwater transition zone. Ecol Evol 5:4174–4186. https://doi.org/10.1002/ece3.1671

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I (2015) CLUMPAK: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour 15:1179–1191. https://doi.org/10.1111/1755-0998.12387

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. Kovats RS, Valentini R, Bouwer LM, Georgopoulou E, Jacob D, Martin E, Rounsevell M, Soussana JF (2014) Europe. In: Barros V, Field CB, Dokken DJ, Mastrandrea MD, Mach KJ, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 1267–1326

    Google Scholar 

  67. Kraj W, Sztorc A (2009) Genetic structure and variability of phenological forms in the European beech (Fagus sylvatica L.). Ann For Sci 66:203–203. https://doi.org/10.1051/forest/2008085

    Article  Google Scholar 

  68. Krajmerová D, Hrivnák M, Ditmarová Ľ, Jamnická G, Kmeť J, Kurjak D, Gömöry D (2017) Nucleotide polymorphisms associated with climate, phenology and physiological traits in European beech (Fagus sylvatica L.). New For 48(3):463–477. https://doi.org/10.1007/s11056-017-9573-9

    Article  Google Scholar 

  69. Kramer K, Degen B, Buschbom J, Hickler T, Thuiller W, Sykes MT, de Winter W (2010) Modelling exploration of the future of European beech (Fagus sylvatica L.) under climate change—range, abundance, genetic diversity and adaptive response. For Ecol Manag 259:2213–2222. https://doi.org/10.1016/j.foreco.2009.12.023

    Article  Google Scholar 

  70. Kremer A, Ronce O, Robledo-Arnuncio JJ, Guillaume F, Bohrer G, Nathan R, Bridle JR, Gomulkiewicz R, Klein EK, Ritland K, Kuparinen A, Gerber S, Schueler S (2012) Long-distance gene flow and adaptation of forest trees to rapid climate change. Ecol Lett 15:378–392. https://doi.org/10.1111/j.1461-0248.2012.01746.x

    Article  PubMed  PubMed Central  Google Scholar 

  71. Krutovsky KV, Clair JBS, Saich R, Hipkins VD, Neale DB (2009) Estimation of population structure in coastal Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco var. menziesii] using allozyme and microsatellite markers. Tree Genet Genomes 5:641–658. https://doi.org/10.1007/s11295-009-0216-y

    Article  Google Scholar 

  72. Lalagüe H, Csilléry K, Oddou-Muratorio S, Safrana J, de QC, Fady B, González-Martínez SC, Vendramin GG (2014) Nucleotide diversity and linkage disequilibrium at 58 stress response and phenology candidate genes in a European beech (Fagus sylvatica L.) population from southeastern France. Tree Genet Genomes 10:15–26. https://doi.org/10.1007/s11295-013-0658-0

    Article  Google Scholar 

  73. Lamesch P, Berardini TZ, Li D, Swarbreck D, Wilks C, Sasidharan R, Muller R, Dreher K, Alexander DL, Garcia-Hernandez M, Karthikeyan AS, Lee CH, Nelson WD, Ploetz L, Singh S, Wensel A, Huala E (2012) The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res 40:D1202–D1210. https://doi.org/10.1093/nar/gkr1090

    CAS  Article  PubMed  Google Scholar 

  74. Lefèvre S, Wagner S, Petit RJ, De Lafontaine G (2012) Multiplexed microsatellite markers for genetic studies of beech. Mol Ecol Resour 12:484–491. https://doi.org/10.1111/j.1755-0998.2011.03094.x

    CAS  Article  PubMed  Google Scholar 

  75. Lewontin RC, Krakauer J (1973) Distribution of gene frequency as a test of the theory of the selective neutrality of polymorphisms. Genetics 74:175–195

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Li J, Li H, Jakobsson M, Li S, Sjödin P, Lascoux M (2012) Joint analysis of demography and selection in population genetics: where do we stand and where could we go? Mol Ecol 21:28–44. https://doi.org/10.1111/j.1365-294X.2011.05308.x

    CAS  Article  PubMed  Google Scholar 

  77. Lotterhos KE, Whitlock MC (2015) The relative power of genome scans to detect local adaptation depends on sampling design and statistical method. Mol Ecol 24:1031–1046. https://doi.org/10.1111/mec.13100

    Article  PubMed  PubMed Central  Google Scholar 

  78. Maliva R, Missimer T (2012) Aridity and drought. In: Arid lands water evaluation and management, 1st edn. Springer, Berlin, pp 21–39

    Google Scholar 

  79. Manel S, Poncet BN, Legendre P, Gugerli F, Holderegger R (2010) Common factors drive adaptive genetic variation at different spatial scales in Arabis alpina. Mol Ecol 19:3824–3835. https://doi.org/10.1111/j.1365-294X.2010.04716.x

    Article  PubMed  Google Scholar 

  80. Manel S, Gugerli F, Thuiller W, Alvarez N, Legendre P, Holderegger R, Gielly L, Taberlet P, IntraBioDiv Consortium (2012) Broad-scale adaptive genetic variation in alpine plants is driven by temperature and precipitation. Mol Ecol 21:3729–3738. https://doi.org/10.1111/j.1365-294X.2012.05656.x

    Article  PubMed  PubMed Central  Google Scholar 

  81. McCune B, Keon D (2002) Equations for potential annual direct incident radiation and heat load. J Veg Sci 13:603–606. https://doi.org/10.1111/j.1654-1103.2002.tb02087.x

    Article  Google Scholar 

  82. Meirmans PG, Hedrick PW (2011) Assessing population structure: FST and related measures. Mol Ecol Resour 11:5–18. https://doi.org/10.1111/j.1755-0998.2010.02927.x

    Article  PubMed  Google Scholar 

  83. Meirmans PG, Tienderen PHV (2004) GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4:792–794. https://doi.org/10.1111/j.1471-8286.2004.00770.x

    Article  Google Scholar 

  84. Morin PA, Luikart G, Wayne RK, the SNP workshop group (2004) SNPs in ecology, evolution and conservation. Trends Ecol Evol 19:208–216. https://doi.org/10.1016/j.tree.2004.01.009

    Article  Google Scholar 

  85. Müller M (2013) A candidate gene-based association study to investigate potentially adaptive genetic variation in European beech (Fagus sylvatica L.). Dissertation, Georg-August-University Göttingen

  86. Müller M, Seifert S, Finkeldey R (2015a) Identification of SNPs in candidate genes potentially involved in bud burst in European beech (Fagus sylvatica L.). Silvae Genet 64:1–20

    Article  Google Scholar 

  87. Müller M, Seifert S, Finkeldey R (2015b) A candidate gene-based association study reveals SNPs significantly associated with bud burst in European beech (Fagus sylvatica L.). Tree Genet Genomes 11:1–13. https://doi.org/10.1007/s11295-015-0943-1

    Article  Google Scholar 

  88. Namroud M-C, Beaulieu J, Juge N, Laroche J, Bousquet J (2008) Scanning the genome for gene single nucleotide polymorphisms involved in adaptive population differentiation in white spruce. Mol Ecol 17:3599–3613. https://doi.org/10.1111/j.1365-294X.2008.03840.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  89. Narum SR, Hess JE (2011) Comparison of FST outlier tests for SNP loci under selection. Mol Ecol Resour 11:184–194. https://doi.org/10.1111/j.1755-0998.2011.02987.x

    Article  PubMed  Google Scholar 

  90. Oddou-Muratorio S, Klein EK, Vendramin GG, Fady B (2011) Spatial vs. temporal effects on demographic and genetic structures: the roles of dispersal, masting and differential mortality on patterns of recruitment in Fagus sylvatica. Mol Ecol 20:1997–2010. https://doi.org/10.1111/j.1365-294X.2011.05039.x

    Article  PubMed  Google Scholar 

  91. Paffetti D, Travaglini D, Buonamici A, Nocentini S, Vendramin GG, Giannini R, Vettori C (2012) The influence of forest management on beech (Fagus sylvatica L.) stand structure and genetic diversity. For Ecol Manag 284:34–44. https://doi.org/10.1016/j.foreco.2012.07.026

    Article  Google Scholar 

  92. Pagani F, Raponi M, Baralle FE (2005) Synonymous mutations in CFTR exon 12 affect splicing and are not neutral in evolution. Proc Natl Acad Sci U S A 102:6368–6372. https://doi.org/10.1073/pnas.0502288102

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  93. Pastorelli R, Smulders MJM, Van’T Westende WPC, Vosman B, Giannini R, Vettori C, Vendramin GG (2003) Characterization of microsatellite markers in Fagus sylvatica L. and Fagus orientalis Lipsky. Mol Ecol Notes 3:76–78. https://doi.org/10.1046/j.1471-8286.2003.00355.x

    CAS  Article  Google Scholar 

  94. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295. https://doi.org/10.1111/j.1471-8286.2005.01155.x

    Article  Google Scholar 

  95. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539. https://doi.org/10.1093/bioinformatics/bts460

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  96. Petit RJ, Hampe A (2006) Some evolutionary consequences of being a tree. Annu Rev Ecol Evol Syst 37:187–214. https://doi.org/10.1146/annurev.ecolsys.37.091305.110215

    Article  Google Scholar 

  97. Piedallu C, Gégout J-C, Perez V, Lebourgeois F (2013) Soil water balance performs better than climatic water variables in tree species distribution modelling. Glob Ecol Biogeogr 22:470–482. https://doi.org/10.1111/geb.12012

    Article  Google Scholar 

  98. Piotti A, Leonardi S, Buiteveld J, Geburek T, Gerber S, Kramer K, Vettori C, Vendramin GG (2012) Comparison of pollen gene flow among four European beech (Fagus sylvatica L.) populations characterized by different management regimes. Heredity 108:322–331. https://doi.org/10.1038/hdy.2011.77

    CAS  Article  PubMed  Google Scholar 

  99. Pluess AR, Määttänen K (2013) Characterization of eighteen novel microsatellite markers and multiplex PCR protocol for Fagus sylvatica. Conserv Genet Resour 5:311–314. https://doi.org/10.1007/s12686-012-9791-6

    Article  Google Scholar 

  100. Pluess AR, Weber P (2012) Drought-adaptation potential in Fagus sylvatica: linking moisture availability with genetic diversity and dendrochronology. PLoS One 7:e33636. https://doi.org/10.1371/journal.pone.0033636

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  101. Pluess AR, Frank A, Heiri C, Lalagüe H, Vendramin GG, Oddou-Muratorio S (2016) Genome–environment association study suggests local adaptation to climate at the regional scale in Fagus sylvatica. New Phytol 210:589–601. https://doi.org/10.1111/nph.13809

    CAS  Article  PubMed  Google Scholar 

  102. Poncet BN, Herrmann D, Gugerli F, Taberlet P, Holderegger R, Gielly L, Rioux D, Thuiller W, Aubert S, Manel S (2010) Tracking genes of ecological relevance using a genome scan in two independent regional population samples of Arabis alpina. Mol Ecol 19:2896–2907. https://doi.org/10.1111/j.1365-294X.2010.04696.x

    CAS  Article  PubMed  Google Scholar 

  103. Pritchard JK, Di Rienzo A (2010) Adaptation—not by sweeps alone. Nat Rev Genet 11:665–667. https://doi.org/10.1038/nrg2880

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  104. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Prunier J, Laroche J, Beaulieu J, Bousquet J (2011) Scanning the genome for gene SNPs related to climate adaptation and estimating selection at the molecular level in boreal black spruce. Mol Ecol 20:1702–1716. https://doi.org/10.1111/j.1365-294X.2011.05045.x

    CAS  Article  PubMed  Google Scholar 

  106. Prunier J, Pelgas B, Gagnon F, Desponts M, Isabel N, Beaulieu J, Bousquet J (2013) The genomic architecture and association genetics of adaptive characters using a candidate SNP approach in boreal black spruce. BMC Genomics 14:368. https://doi.org/10.1186/1471-2164-14-368

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  107. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  108. Rajendra KC, Seifert S, Prinz K, Gailing O, Finkeldey R (2014) Subtle human impacts on neutral genetic diversity and spatial patterns of genetic variation in European beech (Fagus sylvatica). For Ecol Manag 319:138–149. https://doi.org/10.1016/j.foreco.2014.02.003

    Article  Google Scholar 

  109. Rajora OP, Eckert AJ, Zinck JWR (2016) Single-locus versus multilocus patterns of local adaptation to climate in eastern white pine (Pinus strobus, Pinaceae). PLoS ONE 11(7):e0158691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Article  Google Scholar 

  111. Rellstab C, Gugerli F, Eckert AJ, Hancock AM, Holderegger R (2015) A practical guide to environmental association analysis in landscape genomics. Mol Ecol 24:4348–4370. https://doi.org/10.1111/mec.13322

    Article  PubMed  Google Scholar 

  112. Rellstab C, Zoller S, Walthert L, Lesur I, Pluess AR, Graf R, Bodénès C, Sperisen C, Kremer A, Gugerli F (2016) Signatures of local adaptation in candidate genes of oaks (Quercus spp.) with respect to present and future climatic conditions. Mol Ecol 25:5907–5924. https://doi.org/10.1111/mec.13889

    Article  PubMed  Google Scholar 

  113. Rousset F (2008) GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106. https://doi.org/10.1111/j.1471-8286.2007.01931.x

    Article  PubMed  Google Scholar 

  114. Russello MA, Kirk SL, Frazer KK, Askey PJ (2012) Detection of outlier loci and their utility for fisheries management. Evol Appl 5:39–52. https://doi.org/10.1111/j.1752-4571.2011.00206.x

    Article  PubMed  Google Scholar 

  115. Sander T, König S, Rothe GM, Janssen A, Weisgerber H (2000) Genetic variation of European beech (Fagus sylvatica L.) along an altitudinal transect at Mount Vogelsberg in Hesse, Germany. Mol Ecol 9:1349–1361

    CAS  Article  PubMed  Google Scholar 

  116. Schoville SD, Bonin A, François O, Lobreaux S, Melodelima C, Manel S (2012) Adaptive genetic variation on the landscape: methods and cases. Annu Rev Ecol Evol Syst 43:23–43. https://doi.org/10.1146/annurev-ecolsys-110411-160248

    Article  Google Scholar 

  117. Seifert S (2012) Variation of candidate genes related to climate change in European beech (Fagus sylvatica L.). Dissertation, Georg-August-University Göttingen

  118. Seifert S, Vornam B, Finkeldey R (2012) A set of 17 single nucleotide polymorphism (SNP) markers for European beech (Fagus sylvatica L.). Conserv Genet Resour 4:1045–1047. https://doi.org/10.1007/s12686-012-9703-9

    Article  Google Scholar 

  119. Selkoe KA, Toonen RJ (2006) Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett 9:615–629. https://doi.org/10.1111/j.1461-0248.2006.00889.x

    Article  PubMed  Google Scholar 

  120. Sork VL, Davis FW, Westfall R, Flint A, Ikegami M, Wang H, Grivet D (2010) Gene movement and genetic association with regional climate gradients in California valley oak (Quercus lobata Née) in the face of climate change. Mol Ecol 19:3806–3823. https://doi.org/10.1111/j.1365-294X.2010.04726.x

    Article  PubMed  Google Scholar 

  121. Stephan W (2016) Signatures of positive selection: from selective sweeps at individual loci to subtle allele frequency changes in polygenic adaptation. Mol Ecol 25:79–88. https://doi.org/10.1111/mec.13288

    CAS  Article  PubMed  Google Scholar 

  122. Stucki S, Orozco-terWengel P, Forester BR, Duruz S, Colli L, Masembe C, Negrini R, Landguth E, Jones MR, The NEXTGEN Consortium, Bruford MW, Taberlet P, Joost S (2017) High performance computation of landscape genomic models including local indicators of spatial association. Mol Ecol Resour 17(5):1072–1089. https://doi.org/10.1111/1755-0998.12629

    CAS  Article  PubMed  Google Scholar 

  123. Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38:55–94. https://doi.org/10.2307/210739

    Article  Google Scholar 

  124. Tigano A, Friesen VL (2016) Genomics of local adaptation with gene flow. Mol Ecol 25:2144–2164. https://doi.org/10.1111/mec.13606

    Article  PubMed  Google Scholar 

  125. Trenberth K (2011) Changes in precipitation with climate change. Clim Res 47:123–138

    Article  Google Scholar 

  126. Tsumura Y, Uchiyama K, Moriguchi Y, Kimura MK, Ueno S, Ujino-Ihara T (2014) Genetic differentiation and evolutionary adaptation in Cryptomeria japonica. G3 Genes Genomes Genetics 4:2389–2402. https://doi.org/10.1534/g3.114.013896

    Article  PubMed  PubMed Central  Google Scholar 

  127. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. https://doi.org/10.1111/j.1471-8286.2004.00684.x

    CAS  Article  Google Scholar 

  128. Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23:48–55. https://doi.org/10.1016/j.tibtech.2004.11.005

    CAS  Article  PubMed  Google Scholar 

  129. Vitti JJ, Grossman SR, Sabeti PC (2013) Detecting natural selection in genomic data. Annu Rev Genet 47:97–120. https://doi.org/10.1146/annurev-genet-111212-133526

    CAS  Article  PubMed  Google Scholar 

  130. Vornam B, Decarli N, Gailing O (2004) Spatial distribution of genetic variation in a natural beech stand (Fagus sylvatica L.) based on microsatellite markers. Conserv Genet 5:561–570. https://doi.org/10.1023/B:COGE.0000041025.82917.ac

    CAS  Article  Google Scholar 

  131. Weber P, Pluess A, Mühlethaler U (2011) Genetic resources of beech in Switzerland. In: Frydl J, Novotny P, Fennessy J, von Wühlisch G (eds) COST Action E 52 Genetic resources of beech in Europe—current state. Johann Heinrich von Thünen-Institut, Braunschweig, pp 248–255

    Google Scholar 

Download references

Acknowledgments

We thank Florian Schreyer and Jhon Rivera-Monroy for their help in the fieldwork, and Alexandra Dolynska for her assistance in the laboratory. We also thank Hadrien Lalagüe for providing the SNP positions and haplotype sequences from his study to select the haplotype tag SNPs. We also thank COLFUTURO and the Administrative Department of Science, Technology and Innovation COLCIENCIAS for supporting Laura Cuervo-Alarcon during this study. We appreciate very much two anonymous reviewers for their thorough reviews that greatly helped us improve the manuscript.

Funding

This study was financially supported by the Swiss Federal Office for the Environment FOEN and the Swiss Federal Institute for Forest, Snow and Landscape Research WSL.

Author information

Affiliations

Authors

Contributions

LCA collected the samples, generated and analyzed the data, and wrote the manuscript. MA helped with the sample collection; MA, CS, KVK, and RF conceived and designed the study, developed the experimental plan, coordinated the research, and participated in the drafting of the manuscript. MM helped with data analysis, interpretation, and manuscript editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Konstantin V. Krutovsky.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Data archiving statement

Genotype data corresponding to SSR and SNP markers were submitted to the TreeGenes Database (https://treegenesdb.org/Drupal; accession number: TGDR073).

Additional information

Communicated by F. Gugerli

Electronic supplementary material

ESM 1

(DOCX 173 kb)

ESM 2

(DOCX 17881 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cuervo-Alarcon, L., Arend, M., Müller, M. et al. Genetic variation and signatures of natural selection in populations of European beech (Fagus sylvatica L.) along precipitation gradients. Tree Genetics & Genomes 14, 84 (2018). https://doi.org/10.1007/s11295-018-1297-2

Download citation

Keywords

  • Adaptation
  • Climate change
  • Environmental association analysis
  • Microsatellite
  • Outlier analysis
  • SNP