Skip to main content
Log in

Genomic structure, QTL mapping, and molecular markers of lipase genes responsible for palm oil acidity in the oil palm (Elaeis guineensis Jacq.)

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

The degradation of triglycerides in oil palm fruit due to an endogenous lipase in the pulp is the main reason for acidification of palm oil, which causes major economic losses and is currently mainly associated with the FLL1 gene. We designed this study to identify all the major genes controlling differences in acidity and lipase activity in the oil palm fruit mesocarp and determine a molecular markers kit to allow marker-assisted selection of commercial varieties with low acidity. Not only one gene (FLL1) but three closely linked genes including FLL1 were found and characterized in LM2T_EgCIR184O12c, a bacterial artificial chromosome sequence of 231 kb. Intra-gene PCR-based markers were designed for these genes. A QTL gene co-localization analysis for oil acidity (percentage of fatty acids released) was performed on two mapping populations. It evidenced a single major QTL at our lipase gene loci, explaining 84 to 92% of phenotypic variation, and validating the main genetic control of palm oil acidification by FLL1 and/or by the two new lipase genes. The three lipase genes had high homology to demonstrated triacylglycerol lipases. While FLL1 shows the highest expression levels, the two other genes may also contribute to oil acidity. Our molecular markers of lipase genes and the associated major QTL is an important step towards marker-assisted selection of commercial varieties with low acidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abigor DR, Opoku RA, Opute FI, Osagie AU (1985) Partial purification and some properties of the lipase present in oil palm (Elaeis guineensis) mesocarp. J Sci Food Agric 36:599–606

    Article  CAS  Google Scholar 

  • Billotte N, Risterucci AM, Barcelos E, Noyer JL, Amblard P, Baurens FC (2001) Development, characterisation and across-taxa utility of oil palm (Elaeis guineensis Jacq.) microsatellite markers. Genome 44:413–425. https://doi.org/10.1139/gen-44-3-413

    Article  CAS  PubMed  Google Scholar 

  • Billotte N, Marseillac N, Risterucci A-M, Adon B, Brottier P, Baurens FC, Singh R, Herran A, Asmady H, Billot C, Amblard P, Durand-Gasselin T, Courtois B, Asmono D, Cheah SC, Rohde W, Ritter E, Charrier A (2005) Microsatellite-based high density linkage map in oil palm (Elaeis guineensis Jacq.). Theor Appl Genet 110:754–765. https://doi.org/10.1007/s00122-004-1901-8

    Article  CAS  PubMed  Google Scholar 

  • Billotte N, Jourjon MF, Marseillac N, Berger A, Flori A, Asmady H, Adon B, Singh R, Nouy B, Potier F, Cheah SC, Rohde W, Ritter E, Courtois B, Charrier A, Mangin B (2010) QTL detection by multi-parent linkage mapping in oil palm (Elaeis guineensis Jacq.). Theor Appl Genet 120:1673–1687. https://doi.org/10.1007/s00122-010-1284-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourgis F, Kilaru A, Cao X, Ngando-Ebongue GF, Drira N, Ohlrogge JB, Arondel V (2011) Comparative transcriptome and metabolite analysis of oil palm and date palm mesocarp that differ dramatically in carbon partitioning. PNAS 108:12527–12532. https://doi.org/10.1073/pnas.1106502108

    Article  PubMed  Google Scholar 

  • Cadena T, Prada F, Aidé P, Romero HM (2013) Lipase activity, mesocarp oil content, and iodine value in oil palm fruits of Elaeis guineensis, Elaeis oleifera, and the interspecific hybrid O × G (E. oleifera × E. guineensis). J Sci Food Agric 93:674–680. https://doi.org/10.1002/jsfa.5940

    Article  CAS  PubMed  Google Scholar 

  • Churchill G, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    CAS  PubMed  PubMed Central  Google Scholar 

  • Codex Alimentarius/FAO/WHO (2005) Norme alimentaire pour huiles et graisses. CODEX-STAN 210

  • Corley RHV, Tinker PB (2016) The oil palm, Fifth edn. John Wiley & Sons, Ltd., Oxford

    Google Scholar 

  • Dapprich J, Feriola D, Mackiewicz K et al (2016) The next generation of target capture technologies - large DNA fragment enrichment and sequencing determines regional genomic variation of high complexity. BMC Genomics 17:486. https://doi.org/10.1186/s12864-016-2836-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dereeper A, Argout X, Billot C, Rami JF, Ruiz M (2007) SAT, a flexible and optimized web application for SSR marker development. BMC Bioinformatics 8:465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derewenda Z (1994) Structure and function of lipases. Adv Protein Chem 45:1–52

    Article  CAS  PubMed  Google Scholar 

  • Desassis A (1957) L’acidification de l’huile de palme. Oleagineux 12:525–534

    CAS  Google Scholar 

  • Durand-Gasselin T, Billotte N, Pomies V, et al (2009) ID checking by microsatellite type markers (SSR) during the oil palm variety selection and production processes. In: “International seminar on oil palm genomics and its application to oil palm breeding.” ISOPB (The International Society for Oil Palm Breeders) conferences, Kuala Lumpur Convention Centre Malaysia. pp 1–8

  • Eastmond PJ (2004) Cloning and characterization of the acid lipase from castor beans. J Biol Chem 279:45540–45545. https://doi.org/10.1074/jbc.M408686200

    Article  CAS  PubMed  Google Scholar 

  • Eastmond PJ (2006) SUGAR-DEPENDENT1 encodes a Patatin domain triacylglycerol lipase that initiates storage oil breakdown in germinating Arabidopsis seeds. Plant Cell 18:665–675. https://doi.org/10.1105/tpc.105.040543.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Kouhen K, Blangy S, Ortiz E et al (2005) Identification and characterization of a triacylglycerol lipase in Arabidopsis homologous to mammalian acid lipases. FEBS Lett 579:6067–6073

    Article  CAS  PubMed  Google Scholar 

  • Elshire R, Glaubitz J, Sun Q et al (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6(5):e19379. https://doi.org/10.1371/journal.pone.0019379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibon V, de Greyt W, Kellens M (2007) Palm oil refining. Eur J Lipid Sci Tech 109:315–335

    Article  CAS  Google Scholar 

  • Haldane J (1919) The combination of linkage values, and the calculation of distance between the loci of linked factors. J Genet 8:299–309

    Article  Google Scholar 

  • Jeong M-J, Shih M-C (2003) Interaction of a GATA factor with cis-acting elements involved in light regulation of nuclear genes encoding chloroplast glyceraldehyde-3-phosphate dehydrogenase in Arabidopsis. Biochem Biophys Res Commun 300:555–562

    Article  CAS  PubMed  Google Scholar 

  • Li-beisson Y, Shorrosh B, Beisson F et al (2013) Acyl-Lipid Metabolism. Arab B 11:e0161. https://doi.org/10.1199/tab.0161

    Article  Google Scholar 

  • Likeng-Li-Ngue BC, Bell JM, Ngando-Ebongue GF, Ntsomboh GN, Ngalle HB (2016) Genetic determinism of oil acidity among some DELI oil palm (Elaeis guineensis Jacq.) progenies. Afr J Biotechnol 15(34):1841–1845

    Article  Google Scholar 

  • Montoya C, Lopes R, Flori A et al (2013) Quantitative trait loci (QTLs) analysis of palm oil fatty acid composition in an interspecific pseudo-backcross from Elaeis oleifera (H.B. K.) Cortés and oil palm (Elaeis guineensis Jacq.). Tree genet genomes. https://doi.org/10.1007/s11295-013-0629-5

    Article  Google Scholar 

  • Morcillo F, Cros D, Billotte N, Ngando-Ebongue GF, Domonhédo H, Pizot M, Cuéllar T, Espéout S, Dhouib R, Bourgis F, Claverol S, Tranbarger TJ, Nouy B, Arondel V (2013) Improving palm oil quality through identification and mapping of the lipase gene causing oil deterioration. Nat Commun doi 4:2160. https://doi.org/10.1038/ncomms3160

    Article  CAS  Google Scholar 

  • Ngando Ebongue GF (2009) Etude de la lipase endogène du mésocarpe du fruit du palmier à huile (Elaeis guineensis Jacq.) : Application à la sélection de lignées à faible acidité de l’huile. Thèse de Doctorat de Université Victor Segalen Bordeaux 2.137 p

  • Ngando Ebongue G-F, Dhouib R, Carrière F, Amvam Zollo PH, Arondel V (2006) Assaying lipase activity from oil palm fruit (Elaeis guineensis Jacq.) mesocarp. Plant Physiol Biochem 44:611–617. https://doi.org/10.1016/j.plaphy.2006.09.006

    Article  CAS  PubMed  Google Scholar 

  • Ngando Ebongue FG, Koona P, Nouy B et al (2008) Identification of oil palm breeding lines producing oils with low acid values. Eur J Lipid Sci Technol 110:505–509. https://doi.org/10.1002/ejlt.200700263

    Article  CAS  Google Scholar 

  • Nurniwalis AW, Siti Nor Akmar A, Chan PL, Manaf MA (2007) Isolation of a cDNA encoding a lipase class 3 family protein from oil palm (Elaeis guineensis Jacq.). In: Proceedings of the PIPOC 2007 International palm oil congress “Agriculture, Biotechnology & Sustainability.” pp 1011–1020

  • Nurniwalis AW, Suhaimi N, Siti Nor Akmar A et al (2008) Gene discovery via expressed sequence tags from the oil palm (Elaeis guineensis Jacq.) mesocarp. J Oil Palm Res 2:87–96

    Google Scholar 

  • Nurniwalis AW, Zubaidah R, Siti Nor Akmar A, Zulkifli H, Mohamad Arif MA, Massawe FJ, Chan KL, Parveez GKA (2015) Genomic structure and characterization of a lipase class 3 gene and promoter from oil palm. Biol Plant 59:227–236

    Article  CAS  Google Scholar 

  • Ollis D, Cheah E, Cygler M et al (1992) The a/b hydrolase fold. Protein Eng 5:197–211

    Article  CAS  PubMed  Google Scholar 

  • Piffanelli P, Lagoda P, Clément D, et al (2002) Bactrop: A BAC-based platform for physical mapping of tropical species. In: Plant, Animal and Microbe Genomes 10th Conference, San Diego (California, USA), 12–16 janvier 2002

  • Ritter E, Gebhardt C, Salamini F (1990) Estimation of recombination frequencies and constructions of RFLP linkage maps in plants from crosses between heterozygous parents. Genetics 224:645–654

    Google Scholar 

  • Roy R, Steffens DL, Gartside B, Jang GY, Brumbaugh JA (1996) Producing STR locus patterns from bloodstains and other forensic samples using an infrared fluorescent automated DNA sequencer. J Forensic Sci 41:418–424

    Article  CAS  PubMed  Google Scholar 

  • Sambanthamurthi R, Oo KC, Parman SH (1995) Factors affecting lipase activity in Elaeis guineensis mesocarp. Plant Physiol Biochem 33: 353–359

    CAS  Google Scholar 

  • Sambanthamurthi R, Rajanaidu N, Parman SH (2000) Screening for lipase activity in the oil palm. Biochem Soc Trans 28:769–770

    Article  CAS  PubMed  Google Scholar 

  • Shiex T, Gaspin C (1997) Cartagene: constructing and joining maximum likelihood genetic maps. In: proceedings of the 5th international conference on intelligent systems Mol biol. Halkidiki, Greece. 21-26 Juin 1997

  • Singh R, Ong-Abdullah M, Low E-TL, Manaf MAA, Rosli R, Nookiah R, Ooi LCL, Ooi S–E, Chan KL, Halim MA, Azizi N, Nagappan J, Bacher B, Lakey N, Smith SW, He D, Hogan M, Budiman MA, Lee EK, DeSalle R, Kudrna D, Goicoechea JL, Wing RA, Wilson RK, Fulton RS, Ordway JM, Martienssen RA, Sambanthamurthi R (2013) Oil palm genome sequence reveals divergence of interfertile species in old and new worlds. Nature 500:335–339. https://doi.org/10.1038/nature12309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tranbarger TJ, Dussert S, Joe T et al (2011) Regulatory mechanisms underlying oil palm fruit mesocarp maturation, ripening, and functional specialization in lipid and carotenoid metabolism. Plant Physiol 156:564–584. https://doi.org/10.1104/pp.111.175141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tranbarger TJ, Kluabmongkol W, Sangsrakru D, Morcillo F, Tregear JW, Tragoonrung S, Billotte N (2012) SSR markers in transcripts of genes linked to posttranscriptional and transcriptional regulatory functions during vegetative and reproductive development of Elaeis guineensis. BMC Plant Biol 12:1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • USDA (2016) Oilseeds: world market and trade. Foreign Agricultural Service, Circular Series October 2016. http://apps.fas.usda.gov/psdonline/circulars/production.pdf. Accessed 16 Mar 2017

  • Van Ooijen J (2004) MapQTL5, software for mapping of quantitative loci in experimental populations. Kyazma BV. Wageningen, the Netherlands

  • Van Ooijen JW (2006) JoinMap ® 4, software for the calculation of genetic linkage maps in experimental populations. Kyazma B.V., Wageningen

  • Wong YT, Kushairi A, Rajanaidu N et al (2015) Screening of wild oil palm (Elaeis guineensis) germplasm for lipase activity. J Agric Sci 154:1241–1252. https://doi.org/10.1017/S0021859615001112

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Hubert Domonhedo is a recipient of the French Embassy SCAC scholarship and the West Africa Agricultural Productivity Program (WAAPP) fellowship. The authors are grateful to the CRA-PP of INRAB for providing the plant samples and phenotypic data. We would also like to thank the Ivory Coast’s Centre National de Recherche Agronomique (CNRA) for providing the LM2T oil palm leaf material previously used to construct the oil palm BAC library. We would furthermore like to express our gratitude to the reviewers of this journal for their corrections and kind help in improving this article. Finally, we are grateful to Dr. Fabienne Morcillo (IRD, France) for providing the PCR primers for the probes of candidate gene FLL1.

Funding

This study was funded by the Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), PalmElit S.A.S., and the Centre de Recherches Agricoles Plantes Pérennes (CRA-PP) of the Institut National des Recherches Agricoles du Bénin (INRAB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Billotte.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Communicated by A. A. Myburg

Electronic supplementary material

ESM 1

(DOCX 36 kb)

ESM 2

(DOCX 95 kb)

ESM 3

(DOCX 40 kb)

ESM 4

(DOCX 103 kb)

ESM 5

(DOCX 704 kb)

ESM 6

(DOCX 34 kb)

ESM 7

(DOCX 169 kb)

ESM 8

(DOCX 34 kb)

ESM 9

(DOCX 741 kb)

ESM 10

(DOCX 117 kb)

Data archiving statement

The published microsatellite markers used in the present study were described in Billotte et al. (2001, 2005, 2010), Durand-Gasselin et al. (2009), and Tranbarger et al. (2012).

The BAC consensus sequence and the genomic sequence of each of the three lipase genes identified are archived and publicly available at the National Center for Biotechnology Information (NCBI; https://www.ncbi.nlm.nih.gov/). Their accession numbers are as follows: NCBI accession no. KX588870 of BAC consensus sequence LM2T_EgCIR184O12c, NCBI accession no. KX588871 of the genomic sequence of gene EgCIR184O12c_g0040, NCBI accession no. KX588872 of the genomic sequence of gene EgCIR184O12c_g0050, and NCBI accession no. KX588873 of the genomic sequence of gene EgCIR184O12c_g0170.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domonhédo, H., Cuéllar, T., Espeout, S. et al. Genomic structure, QTL mapping, and molecular markers of lipase genes responsible for palm oil acidity in the oil palm (Elaeis guineensis Jacq.). Tree Genetics & Genomes 14, 69 (2018). https://doi.org/10.1007/s11295-018-1284-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-018-1284-7

Keywords

Navigation