Skip to main content
Log in

Ad hoc breeding of Abies bornmülleriana for Christmas tree production using a combination of DNA markers and quantitative genetics—a case study

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Quasi-field trials (QFTs) using offspring from first-generation plus trees of Abies bornmülleriana were established on two sites in Denmark via DNA markers and parentage analysis. The aim of this study was to demonstrate an example of ad hoc breeding to make better genetic material available for Christmas tree production. Assessments of several important Christmas tree quality-associated phenotypic traits were made for all offspring individuals in delineated areas of the production stands, and moreover the best individuals in the whole production stands were identified. Postharvest needle retention was evaluated in the parent population in both 2016 and 2017. The results showed that by combining available methodology and pre-selected material, substantial genetic gain in relation to Christmas tree production in A. bornmülleriana could be achieved. Backward selection seems tempting due to its shorter time horizon for delivering improved genetic material. Postharvest needle retention evaluation can be a cheap but important last step in modifying the backward selection. We propose to combine the results based on QFTs with selective seed harvest and paternity tests to give the best possible starting point for production of clonal A. bornmülleriana plants using somatic embryogenesis (SE).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anonymous (2006) Bornmüllerianagran (Abies bornmülleriana). Frøplantage FP267, "Kongsøre"

  • Burdon RD (2004) Forest genetics and tree breeding. Current and future signposts. In: Burley J, Eveno E, Youngquist JA (eds) Encyclopedia of Forest Sciences. Elsevier Academic Press, Amsterdam, pp 1538–1545

    Chapter  Google Scholar 

  • Burley J (2004) A historical overview of forest tree improvement. In: Burley J, Eveno E, Youngquist JA (eds) Encyclopedia of Forest Sciences. Elsevier Academic Press, Amsterdam, pp 1532–1538

    Chapter  Google Scholar 

  • Chastagner GA, Riley KL (2003) Postharvest quality of Noble and Nordmann Fir Christmas trees. Hortscience 38:419–421

    Google Scholar 

  • Coode M, Cullen J (1965) Abies Miller. Flora of Turkey 1:67–70

    Google Scholar 

  • Costa e Silva J, Borralho NMG, Potts BM (2004) Additive and non-additive genetic parameters from clonally replicated and seedling progenies of Eucalyptus globulus. Theor Appl Genet 108:1113–1119. https://doi.org/10.1007/s00122-003-1524-5

    Article  PubMed  Google Scholar 

  • Cotterill PP, Dean CA (1990) Successful tree breeding with index selection. CSIRO Publications, Melbourne

    Google Scholar 

  • Cremer E, Liepelt S, Sebastiani F, Buonamici A, Michalczyk IM, Ziegenhagen B, Vendramin GG (2006) Identification and characterization of nuclear microsatellite loci in Abies alba Mill. Mol Ecol Notes 6(2):374–376

    Article  CAS  Google Scholar 

  • El-Kassaby Y, Lstibůrek M, Liewlaksaneeyanawin C, Slavov GT, Howe GT (2007) Breeding without breeding: approach, example, and proof of concept. In: Isik F (ed) IUFRO, Low input breeding and conservation of forest genetic resources. Antalya, Turkey, pp 43-54

  • El-Kassaby YA, Cappa EP, Liewlaksaneeyanawin C, Klápště J, Lstibůrek M (2011) Breeding without breeding: is a complete pedigree necessary for efficient breeding? PLoS One 6(10):e25737. https://doi.org/10.1371/journal.pone.0025737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Find JI (2016) Towards industrial production of tree varieties through somatic embryogenesis and other vegetative propagation technologies: Nordmanns fir (Abies nordmanniana (Steven) Spach)—from research laboratory to production. In: Park Y-S, Bonga JM, Moon H-K (eds) Vegetative Propagation of Forest Trees. National Institute of Forest Science (NIFoS), Seoul, pp 528–537

    Google Scholar 

  • Frampton J, Isik F, Benson DM (2013) Genetic variation in resistance to Phytophthora cinnamomi in seedlings of two Turkish Abies species. Tree Genet Genomes 9:53–63. https://doi.org/10.1007/s11295-012-0529-0

    Article  Google Scholar 

  • Franco JDA (1950) Abietos. Lisboa

  • Gilmour AR, Thompson R, Cullis BR (1995) Average information REML: an efficient algorithm for variance parameter estimation in linear mixed models. Biometrics 51:1440–1450. https://doi.org/10.2307/2533274

    Article  Google Scholar 

  • Gilmour AR, Cullis BR, Verbyla AP (1997) Accounting for natural and extraneous variation in the analysis of field experiments. J Agric Biol Environ Stat 2(3):269–293. https://doi.org/10.2307/1400446

    Article  Google Scholar 

  • Gilmour A, Gogel B, Cullis B, Welham S, Thompson R (2015) ASReml user guide release 4.1 structural specification. VSN International Ltd, Hemel Hempstead

    Google Scholar 

  • Grattapaglia D, Ribeiro VJ, Rezende GDSP (2004) Retrospective selection of elite parent trees using paternity testing with microsatellite markers: an alternative short term breeding tactic for Eucalyptus. Theor Appl Genet 109:192–199. https://doi.org/10.1007/s00122-004-1617-9

    Article  CAS  PubMed  Google Scholar 

  • Hansen OK, McKinney LV (2010) Establishment of a quasi-field trial in Abies nordmanniana—test of a new approach to forest tree breeding. Tree Genet Genomes 6:345–355. https://doi.org/10.1007/s11295-009-0253-6

    Article  Google Scholar 

  • Hansen OK, Nielsen UB (2008) Crossing success in Abies nordmanniana following artificial pollination with a pollen mixture of A. nordmanniana and A. alba. Silvae Genet 57(1–6):70–76. https://doi.org/10.1515/sg-2008-0011

    Article  Google Scholar 

  • Hansen OK, Vendramin GG, Sebastiani F, Edwards KJ (2005) Development of microsatellite markers in Abies nordmanniana (Stev.) Spach and cross-species amplification in the Abies genus. Mol Ecol Notes 5(4):784–787

    Article  CAS  Google Scholar 

  • Isik F, Amerson HV, Whetten RW, Garcia SA, Li B, McKeand SE (2008) Resistance of Pinus taeda families under artificial inoculations with diverse fusiform rust pathogen populations and comparison with field trials. Can J For Res 38:2687–2696. https://doi.org/10.1139/X08-111

    Article  Google Scholar 

  • Isik F, Amerson HV, Whetten RW, Garcia SA, McKeand SE (2012) Interactions of Fr genes and mixed-pathogen inocula in the loblolly pine-fusiform rust pathosystem. Tree Genet Genomes 8:15–25. https://doi.org/10.1007/s11295-011-0416-0

    Article  Google Scholar 

  • Josserand SA, Potter KM, Johnson G, Bowen JA, Frampton J, Nelson CD (2006) Isolation and characterization of microsatellite markers in Fraser fir (Abies fraseri). Mol Ecol Notes 6(1):65–68

    Article  CAS  Google Scholar 

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program cervus accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106. https://doi.org/10.1111/j.1365-294X.2007.03089.x

    Article  PubMed  Google Scholar 

  • Kjær ED, Hansen LN, Graudal LOV, Olrik DC, Ditlevsen B, Jensen V, Jensen JS (2009) The Danish programme for domestication of native woody species. In: abstracts from workshop on Genetic conservation and management of sparsely distributed trees and bushes. Forest & Landscape Denmark

  • Kormutak A (1985) Study on species hybridization within the genus Abies. Acta Dendrobiologica, VEDA, Bratislava

    Google Scholar 

  • Lambeth C, Lee B-C, O’Malley D, Wheeler N (2001) Polymix breeding with parental analysis of progeny: an alternative to full-sib breeding and testing. Theor Appl Genet 103:930–943. https://doi.org/10.1007/s001220100627

    Article  Google Scholar 

  • Leisgaard T, Ditlevsen B (2007) Abies bornmülleriana. Nåledrys 59:5–7

    Google Scholar 

  • Lian C, Goto S, Hogetsu T (2007) Microsatellite markers for Sachalin fir (Abies sachalinensis Masters). Mol Ecol Notes 7(5):896–898

    Article  CAS  Google Scholar 

  • Lindgren D (2009) A way to utilise the advantages of clonal forestry for Norway spruce? Paper presented at the vegetative propagation of conifers for enhancing landscaping and tree breeding. Proceedings of the Nordic meeting held in September 10th–11th 2008, Punkaharju, Finland

  • Lindgren D, Mullin T (1997) Balancing gain and relatedness in selection. Silvae Genet 46:124–128

    Google Scholar 

  • Lindgren D, Gea L, Jefferson P (1996) Loss of genetic diversity monitored by status number. Silvae Genet 45:52–59

    Google Scholar 

  • Liu T (1971) A monograph of the genus Abies. Department of Forestry, College of Agriculture, National Taiwan University

  • Lstibůrek M, Hodge GR, Lachout P (2015) Uncovering genetic information from commercial forest plantations—making up for lost time using “Breeding without Breeding”. Tree Genet Genomes 11:55. https://doi.org/10.1007/s11295-015-0881-y

    Article  Google Scholar 

  • Lu PX, Huber DA, White TL (1999) Potential biases of incomplete linear models in heritability estimation and breeding value prediction. Can J For Res 29:724–736. https://doi.org/10.1139/x99-047

    Article  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates, Sunderland

    Google Scholar 

  • MacDonald MT, Lada RR, Martynenko AI, Dorais M, Pepin S, Desjardins Y (2010) Ethylene triggers needle abscission in root-detached balsam fir. Trees 24:879–886. https://doi.org/10.1007/s00468-010-0457-2

    Article  CAS  Google Scholar 

  • Madsen SF (1994) Provenance trial of Abies nordmanniana and Abies bornmuelleriana for Christmas tree production in North Sealand. For & Landsc Res 1:143–166

    Google Scholar 

  • Madsen SF (1998) Christmas trees of Bornmuller fir and Nordmann fir in a North Sealand field experiment, Denmark Forskningsserien Forskningscentret for Skov og Landskab No 22, 91–112

  • Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655. https://doi.org/10.1046/j.1365-294x.1998.00374.x

    Article  CAS  PubMed  Google Scholar 

  • Medina Perez AM, White TL, Huber DA, Huber MTA (2007) Graft survival and promotion of female and male strobili by topgrafting in a third-cycle slash pine (Pinus elliottii var. elliottii) breeding program. Can J For Res 37:1244–1252. https://doi.org/10.1139/X07-004

    Article  Google Scholar 

  • Mitcham-Butler EJ, Hinesley LE, Pharr DM (1988) Effects of harvest date, storage temperature, and moisture status on postharvest needle retention of Fraser Fir. J Environ Hortic 6:1–4. https://doi.org/10.24266/0738-2898-6.1.1

    Article  Google Scholar 

  • Moriguchi Y, Prescher F, Lindgren D (2008) Optimum lifetime for Swedish Picea abies seed orchards. New For 35:147–157. https://doi.org/10.1007/s11056-007-9068-1

    Article  Google Scholar 

  • Namkoong G (1979) Introduction to quantitative genetics in forestry, vol 1588. Forest Service. United States. Department of Agriculture

  • Nielsen UB, Chastagner GA (2005) Genetic variation in postharvest needle retention among Nordmann fir families and grafted clones. Scand J For Res 20:304–312. https://doi.org/10.1080/02827580510008365

    Article  Google Scholar 

  • Nielsen UB, Hansen OK (2010) Response to selfing in seed set, seedling establishment and nursery growth based on controlled crosses of Abies nordmanniana clones. Silvae Genet 59(1–6):90–98. https://doi.org/10.1515/sg-2010-0011

    Article  Google Scholar 

  • Nielsen UB, Hansen JK, Kromann HK (2011) Impact of site and provenance on economic return in Nordmann fir Christmas tree production. Scand J For Res 26:74–89. https://doi.org/10.1080/02827581.2010.526955

    Article  Google Scholar 

  • Nielsen MSL, Nielsen UB, Xu J, Hansen OK (2017) Bornmülleriana viser potentiale som alternativ til nordmannsgran. Nåledrys 102:12–17

    Google Scholar 

  • Nørgaard JV (1997) Somatic embryo maturation and plant regeneration in Abies nordmanniana Lk. Plant Sci 124:211–221. https://doi.org/10.1016/S0168-9452(97)04614-1

    Article  Google Scholar 

  • Pâques LE, Foffová E, Heinze B, Lelu-Walter M-A, Mirko L, Philippe G (2013) Breeding of conifers: larches. In: Pâques LE (ed) Forest tree breeding in Europe: current state-of-the-art and perspectives, vol 25. Springer Science & Business Media, pp 13–122

  • Patterson HD, Thompson R (1971) Recovery of inter-block information when block sizes are unequal. Biometrika 58:545–554

    Article  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Ræbild A et al (2011) Advances in domestication of indigenous fruit trees in the West African Sahel. New For 41:297–315. https://doi.org/10.1007/s11056-010-9237-5

    Article  Google Scholar 

  • Rasmussen KK, Strandy Andersen U, Frauenfelder N, Kollmann J (2008) Microsatellite markers for the endangered fir (Pinaceae). Mol Ecol Resour 8(6):1307–1309

    Article  CAS  PubMed  Google Scholar 

  • Ravn HP et al (2013) Dreyfusia nordmannianae in Northern and Central Europe: potential for biological control and comments on its taxonomy. J Appl Entomol 137:401–417. https://doi.org/10.1111/jen.12012

    Article  Google Scholar 

  • Ruotsalainen S, Lindgren D (1998) Predicting genetic gain of backward and forward selection in forest tree breeding. Silvae Genet 47:42–50

    Google Scholar 

  • SAS® software (2017) SAS® software Inst. Inc.

  • Saito Y, Lian CL, Hogetsu T, Ide Y (2005) Development and characterization of microsatellite markers in Abies firma and interspecific amplification in other Japanese Abies species. Mol Ecol Notes 5:234–235

    Article  CAS  Google Scholar 

  • Stuber CW, Cockerham CC (1966) Gene effects and variances in hybrid populations. Genetics 54:1279–1286

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weir RJ (1980) North Carolina State Industry Cooperative Tree Improvement Program. In: 15th North Ameri. Quan. For. Gen. Workshop. August 6–8, Couer d’Alene. ID, pp 57–70

  • White TL (1987) A conceptual framework for tree improvement programs. New For 1:325–342. https://doi.org/10.1007/bf00031742

    Article  Google Scholar 

  • Xiong JS, Isik F, McKeand SE, Whetten RW (2010) Genetic variation of stem forking in Loblolly Pine. For Sci 56:429–436. https://doi.org/10.1093/forestscience/56.5.429

    Article  Google Scholar 

  • Xu J, Budde KB, Hansen OK, Thomsen IM, Ravn HP, Nielsen UB (2018) Do silver fir woolly adelgids (Dreyfusia nordmannianae) facilitate pathogen infestation with Neonectria neomacrospora on Christmas trees (Abies nordmanniana)? For Ecol Manag 424:396–405. https://doi.org/10.1016/j.foreco.2018.05.006

    Article  Google Scholar 

Download references

Acknowledgements

We thank Morten Sune Lindegaard Nielsen for undertaking the Christmas tree scoring in the field and Lars Nørgaard Hansen for the remaining field work, Lene Hasmark Andersen for help in relation to the extraction of DNA and genotyping, and Kenneth Klausen from the Danish Christmas Tree Association for advice in relation to the selection of trees. We also thank the two estates, Gisselfeld Kloster and Vallø Stift, for hosting the studies in their Christmas tree stands. Finally, we acknowledge the Green Development and Demonstration Program [Grønt Udviklings- og Demonstrationsprogram (GUDP)—Grant number: 34009-16-1081] of the Danish Ministry of Food, Agriculture, and Fisheries for financial support for the studies. We also thank the Chinese Scholarship Council (CSC) for providing the PhD scholarship to Jing Xu.

Data accessibility statement

As soon as the paper has been accepted for publication we will archive the data at the data storage facility of the University of Copenhagen. A link will be provided in the final version of the publication which will make the data publicly available.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ole K. Hansen.

Additional information

Communicated by J. Beaulieu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Nielsen, U.B. & Hansen, O.K. Ad hoc breeding of Abies bornmülleriana for Christmas tree production using a combination of DNA markers and quantitative genetics—a case study. Tree Genetics & Genomes 14, 64 (2018). https://doi.org/10.1007/s11295-018-1276-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-018-1276-7

Keywords

Navigation