Skip to main content

Phylogeography of Brazilian pine (Araucaria angustifolia): integrative evidence for pre-Columbian anthropogenic dispersal

Abstract

Phylogeographic studies allow us to better understand the past history of species and the factors that mold their current distribution. Here, we demonstrate the potential human impact on the distribution of a tree species. In particular, it was hypothesized that Araucaria angustifolia, an endangered South American conifer, was dispersed from its Pleistocene glacial refugium to its maximum occurrence distribution (MOD), mainly by pre-Columbian human groups (ca 2000 years ago). In order to test this hypothesis, we sampled 20 A. angustifolia populations in southern Brazil. Our analysis consisted of an integrative phylogeographic approach, supported by ecological aspects of the species. Therefore, we constructed the species chloroplast haplotype network, tested for possible neutrality deviations, genetic divergence, association between genetic and geographic distances, and simulated the amount of time that the species required to reach its MOD without human help. The species showed clear signs of rapid and recent expansion from a single refugium. The haplotype network had a star-like shape. Populations and the species showed negative values for the neutrality tests and low divergence values among populations (FST = 0.041) not associated with geographic distance. The estimated dispersal time required for the species to reach its MOD from its putative refugium without human help is not consistent with the rapid and recent expansion of the species. Hence, we argue that humans played an important role in expanding the distribution of the currently endangered species, and it needs to be accounted for when analyzing landscape genetics or in the development of conservation strategies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Adan N, Atchison J, Reis MS, Peroni N (2016) Local knowledge, use and management of ethnovarieties of Araucaria angustifolia (Bert.) Ktze. In the plateau of Santa Catarina, Brazil. Econ Bot 70:353–364. https://doi.org/10.1007/s12231-016-9361-z

    Article  Google Scholar 

  2. Auler NMF, Reis MS, Guerra MP, Nodari RO (2002) The genetics and conservation of Araucaria angustifolia: I. Genetic structure and diversity of natural populations by means of non-adaptive variation in the state of Santa Catarina, Brazil. Genet Mol Biol 25:329–338

    Article  CAS  Google Scholar 

  3. Avise JC (2009) Phylogeography: retrospect and prospect. J Biogeogr 36:3–15. https://doi.org/10.1111/j.1365-2699.2008.02032.x

    Article  Google Scholar 

  4. Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE, Reeb CA, Saunders NC (1987) Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu Rev Ecol Syst 18:489–522. https://doi.org/10.1146/annurev.es.18.110187.002421

    Article  Google Scholar 

  5. Bandelt HJ, Forster P, Rohl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48. https://doi.org/10.1093/oxfordjournals.molbev.a026036

    Article  CAS  PubMed  Google Scholar 

  6. Barros MJF, Silva-Arias GA, Fregonezi JN, Turchetto-Zolet AC, Iganci JRV, Diniz-Filho JAF, Freitas LB (2015) Environmental drivers of diversity in subtropical highland grasslands. Perspect Plant Ecol Evol Syst 17:360–368. https://doi.org/10.1016/j.ppees.2015.08.001

    Article  Google Scholar 

  7. Behling H (1995) Investigations into the late Pleistocene and Holocene history of vegetation and climate in Santa Catarina (South Brazil). Veg Hist Archaeobot 4:127–152. https://doi.org/10.1007/BF00203932

    Article  Google Scholar 

  8. Behling H (1997) Late quaternary vegetation, climate and fire history of the Araucaria forest and Campos region from Serra Campos Gerais, Paraná state (South Brazil). Rev Palaeobot Palynol 97:109–121

    Article  Google Scholar 

  9. Behling H, Bauermann SG, Neves PCP (2001) Holocene environmental changes in the São Francisco de Paula region, southern Brazil. J S Am Earth Sci 14:631–639. https://doi.org/10.1016/S0895-9811(01)00040-2

    Article  Google Scholar 

  10. Behling H, Pillar VD, Orlóci L, Bauermann SG (2004) Late quaternary Araucaria forest, grassland (Campos), fire and climate dynamics, studied by high-resolution pollen, charcoal and multivariate analysis of the Cambará do Sul core in southern Brazil. Palaeogeogr Palaeoclimatol Palaeoecol 203:277–297. https://doi.org/10.1016/S0031-0182(03)00687-4

    Article  Google Scholar 

  11. Bitencourt LAV, Krauspenhar PM (2006) Possible prehistoric anthropogenic effect on Araucaria angustifolia (Bert.) O. Kuntze expansion during the late holocene. Rev Bras Paleontol 9:109–116. https://doi.org/10.4072/rbp.2006.1.12

    Article  Google Scholar 

  12. Bittencourt JVM, Sebbenn AM (2007) Patterns of pollen and seed dispersal in a small, fragmented population of the wind-pollinated tree Araucaria angustifolia in southern Brazil. Heredity (Edinb) 99:580–591. https://doi.org/10.1038/sj.hdy.6801019

    Article  CAS  Google Scholar 

  13. Bittencourt JVM, Sebbenn AM (2008) Pollen movement within a continuous forest of wind-pollinated Araucaria angustifolia, inferred from paternity and TwoGener analysis. Conserv Genet 9:855–868. https://doi.org/10.1007/s10592-007-9411-2

    Article  Google Scholar 

  14. Cinget B, Gérardi S, Beaulieu J, Bousquet J (2015) Less pollen-mediated gene flow for more signatures of glacial lineages: congruent evidence from balsam fir cpDNA and mtDNA for multiple refugia in eastern and Central North America. PLoS One 10:1–25. https://doi.org/10.1371/journal.pone.0122815

    Article  CAS  Google Scholar 

  15. Clement CR (1999) 1492 and the loss of amazonian crop genetic resources. I. The relation between domestication and human population decline. Econ Bot 53:188–202. https://doi.org/10.1007/bf02866498

    Article  Google Scholar 

  16. Corander J, Sirén J, Arjas E (2008) Bayesian spatial modeling of genetic population structure. Comput Stat 23:111–129. https://doi.org/10.1007/s00180-007-0072-x

    Article  Google Scholar 

  17. Cun Y-Z, Wang X-Q (2015) Phylogeography and evolution of three closely related species of Tsuga (hemlock) from subtropical eastern Asia: further insights into speciation of conifers. J Biogeogr 42:315–327. https://doi.org/10.1111/jbi.12421

    Article  Google Scholar 

  18. de Filippo C, Bostoen K, Stoneking M, Pakendorf B (2012) Bringing together linguistic and genetic evidence to test the bantu expansion. Proc R Soc B Biol Sci 279:3256–3263. https://doi.org/10.1098/rspb.2012.0318

    Article  Google Scholar 

  19. de Souza MIF, Salgueiro F, Carnavale-Bottino M et al (2009) Patterns of genetic diversity in southern and southeastern Araucaria angustifolia (Bert.) O. Kuntze relict populations. Genet Mol Biol 32:546–556. https://doi.org/10.1590/S1415-47572009005000052

    Article  PubMed Central  PubMed  Google Scholar 

  20. Demesure B, Sodzi N, Petit RJ (1995) A set of universal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants. Mol Ecol 4:129–134. https://doi.org/10.1111/j.1365-294X.1995.tb00201.x

    Article  CAS  PubMed  Google Scholar 

  21. Denevan WM (1992) The pristine myth: the landscape of the Americas in 1492. Ann Assoc Am Geogr 82:369–385. https://doi.org/10.1111/j.1467-8306.1992.tb01965.x

    Article  Google Scholar 

  22. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus (Madison) 12:13–15

    Google Scholar 

  23. Dray S, Dufour A-B (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20. https://doi.org/10.18637/jss.v022.i04

    Article  Google Scholar 

  24. Duarte LDS, Dos-Santos MMG, Hartz SM, Pillar VD (2006) Role of nurse plants in Araucaria Forest expansion over grassland in South Brazil. Austral Ecol 31:520–528. https://doi.org/10.1111/j.1442-9993.2006.01602.x

    Article  Google Scholar 

  25. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and windows. Mol Ecol Resour 10:564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x

    Article  PubMed  Google Scholar 

  26. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491. https://doi.org/10.1007/s00424-009-0730-7

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  27. Ferreira DK, Nazareno AG, Mantovani A, Bittencourt R, Sebbenn AM, Reis MS (2012) Genetic analysis of 50-year old Brazilian pine (Araucaria angustifolia) plantations: implications for conservation planning. Conserv Genet 13:435–442. https://doi.org/10.1007/s10592-011-0296-8

    Article  Google Scholar 

  28. Fu Y-X (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Gamache I, Jaramillo-Correa JP, Payette S, Bousquet J (2003) Diverging patterns of mitochondrial and nuclear DNA diversity in subarctic black spruce: imprint of a founder effect associated with postglacial colonization. Mol Ecol 12:891–901. https://doi.org/10.1046/j.1365-294X.2003.01800.x

    Article  CAS  PubMed  Google Scholar 

  30. Gérardi S, Jaramillo-Correa JP, Beaulieu J, Bousquet J (2010) From glacial refugia to modern populations: new assemblages of organelle genomes generated by differential cytoplasmic gene flow in transcontinental black spruce. Mol Ecol 19:5265–5280. https://doi.org/10.1111/j.1365-294X.2010.04881.x

    Article  CAS  PubMed  Google Scholar 

  31. Glaser B, Birk JJ (2012) State of the scientific knowledge on properties and genesis of anthropogenic dark earths in Central Amazonia (terra preta de Índio). Geochim Cosmochim Acta 82:39–51. https://doi.org/10.1016/j.gca.2010.11.029

    Article  CAS  Google Scholar 

  32. Gribel R, Lemes MR, Bernardes LG, Pinto AE, Shepard GH (2007) Phylogeography of Brazil-nut tree (Bertholletia excelsa, Lecythidaceae): evidence of human influence on the species distribution. Association for Tropical Biology and Conservation Annual Meeting: Linking Tropical Biology with Human Dimensions 15–19 July 2007 Morelia, Mexico, p 281

  33. Guerra MP, Silveira V, Reis MS, Schneider L (2002) Exploração, manejo e conservação da araucária (Araucaria angustifolia). In: Lino CF, Simões LL (eds) Sustentável Mata Atlântica: A exploração de seus recursos florestais. Senac, São Paulo, pp 85–102

    Google Scholar 

  34. Gugerli F, Sperisen C, Büchler U et al (2001) Haplotype variation in a mitochondrial tandem repeat of Norway spruce (Picea abies) populations suggests a serious founder effect during postglacial re-colonization of the western alps. Mol Ecol 10:1255–1263. https://doi.org/10.1046/j.1365-294X.2001.01279.x

    Article  CAS  PubMed  Google Scholar 

  35. Hartl DL, Clark AG (2007) Principles of population genetics, 4th edn. Sinauer associates, Sunderland

    Google Scholar 

  36. Höhn M, Gugerli F, Abran P, Bisztray G, Buonamici A, Cseke K, Hufnagel L, Quintela-Sabarís C, Sebastiani F, Vendramin GG (2009) Variation in the chloroplast DNA of Swiss stone pine (Pinus cembra L.) reflects contrasting post-glacial history of populations from the Carpathians and the alps. J Biogeogr 36:1798–1806. https://doi.org/10.1111/j.1365-2699.2009.02122.x

    Article  Google Scholar 

  37. Hueck K (1952) Verbreitung und Standortsansprüche der brasilianischen Araukarie (Araucaria angustiolia). Forstwissenschaftliches Cent 71:272–289

    Article  Google Scholar 

  38. Hueck K (1953) Distribuição e habitat natural do Pinheiro do Paraná (Araucaria angustifolia). Bol da Fac Filos Ciências e Let Univ São Paulo 10:5–24

    Article  Google Scholar 

  39. Iob G, Vieira EM (2008) Seed predation of Araucaria angustifolia (Araucariaceae) in the Brazilian Araucaria Forest: influence of deposition site and comparative role of small and “large” mammals. Plant Ecol 198:185–196. https://doi.org/10.1007/s11258-007-9394-6

    Article  Google Scholar 

  40. Iriarte J, Behling H (2007) The expansion of Araucaria forest in the southern Brazilian highlands during the last 4000 years and its implications for the development of the Taquara/Itararé tradition. Environ Archaeol 12:115–127. https://doi.org/10.1179/174963107x226390

    Article  Google Scholar 

  41. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism, III. Academic Press, New York, pp 21–132

  42. Kaur D, Bhatnagar SP (1985) Fertilization and formation of neocytoplasm in Agathis robusta. Phytomorphology 34:56–60

    Google Scholar 

  43. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  Google Scholar 

  44. Ladio AH (2001) The maintenance of wild edible plant gathering in a Mapuche community of Patagonia. Econ Bot 55:243–254. https://doi.org/10.1007/BF02864562

    Article  Google Scholar 

  45. Levis C, Costa FRC, Bongers F et al (2017) Persistent effects of pre-Columbian plant domestication on Amazonian forest composition. Science (80- ) 355:925–931. https://doi.org/10.1126/science.aal0157

    Article  CAS  Google Scholar 

  46. Levis C, Flores BM, Moreira PA, Luize BG, Alves RP, Franco-Moraes J, Lins J, Konings E, Peña-Claros M, Bongers F, Costa FRC, Clement CR (2018) How people domesticated Amazonian forests. Front Ecol Evol 5:e111. https://doi.org/10.3389/fevo.2017.00171

    Article  Google Scholar 

  47. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452. https://doi.org/10.1093/bioinformatics/btp187

    Article  CAS  PubMed  Google Scholar 

  48. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  49. Mantovani A, Morellato LPC, Reis MS (2006) Internal genetic structure and outcrossing rate in a natural population of Araucaria angustifolia (Bert.) O. Kuntze. J Hered 97:466–472. https://doi.org/10.1093/jhered/esl031

    Article  CAS  PubMed  Google Scholar 

  50. Marchelli P, Baier C, Mengel C, Ziegenhagen B, Gallo LA (2010) Biogeographic history of the threatened species Araucaria araucana (Molina) K. Koch and implications for conservation: a case study with organelle DNA markers. Conserv Genet 11:951–963. https://doi.org/10.1007/s10592-009-9938-5

    Article  Google Scholar 

  51. Medina-Macedo L, Sebbenn AM, Lacerda AEB, Ribeiro JZ, Soccol CR, Bittencourt JVM (2015) High levels of genetic diversity through pollen flow of the coniferous Araucaria angustifolia: a landscape level study in southern Brazil. Tree Genet Genomes 11:1–14. https://doi.org/10.1007/s11295-014-0814-1

    Article  Google Scholar 

  52. Meng L, Chen G, Li Z, Yang Y, Wang Z, Wang L (2015) Refugial isolation and range expansions drive the genetic structure of Oxyria sinensis (Polygonaceae) in the Himalaya-Hengduan Mountains. Sci Rep 5:10396. https://doi.org/10.1038/srep10396

    Article  PubMed Central  PubMed  Google Scholar 

  53. Mogensen HL (1996) The hows and whys of cytoplasmic inheritance in seed plants. Am J Bot 83:383. https://doi.org/10.2307/2446172

    Article  Google Scholar 

  54. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  55. Noelli FS (2000) A ocupação humana na região Sul do Brasil: arqueologia, debates e perspectivas 1872-2000. Rev USP 0(44):218–269

    Article  Google Scholar 

  56. Ornelas JF, Ruiz-Sánchez E, Sosa V (2010) Phylogeography of Podocarpus matudae (Podocarpaceae): pre-quaternary relicts in northern Mesoamerican cloud forests. J Biogeogr 37:2384–2396. https://doi.org/10.1111/j.1365-2699.2010.02372.x

    Article  Google Scholar 

  57. Owens JN, Catalano GL, Morris SJ, Aitken-Christie J (1995) The reproductive riology of kauri (Agathis australis). II. Male gametes, fertilization, and cytoplasmic inheritance. Int J Plant Sci 156:404–416. https://doi.org/10.1086/297262

    Article  Google Scholar 

  58. Paise G, Vieira EM (2005) Produção de frutos e distribuição espacial de angiospermas com frutos zoocóricos em uma Floresta Ombrófila Mista no Rio Grande do Sul, Brasil. Brazilian J Bot 28:615–625

    Article  Google Scholar 

  59. Paludo GF, Duarte RI, Bernardi AP, Mantovani A, Reis MS (2016a) The size of Araucaria angustifolia (Bertol.) Kuntze entering into reproductive stages as a basis for seed management projects. Rev Árvore 40:695–705. https://doi.org/10.1590/0100-67622016000400013

    Article  Google Scholar 

  60. Paludo GF, Lauterjung MB, Reis MS, Mantovani A (2016b) Inferring population trends of Araucaria angustifolia (Araucariaceae) using a transition matrix model in an old-growth forest. South For J For Sci 78:137–143. https://doi.org/10.2989/20702620.2015.1136506

    Article  Google Scholar 

  61. Patreze CM, Tsai SM (2010) Intrapopulational genetic diversity of Araucaria angustifolia (Bertol.) Kuntze is different when assessed on the basis of chloroplast or nuclear markers. Plant Syst Evol 284:111–122. https://doi.org/10.1007/s00606-009-0238-9

    Article  CAS  Google Scholar 

  62. Peakall R, Ebert D, Scott LJ, Meagher PF, Offord CA (2003) Comparative genetic study confirms exceptionally low genetic variation in the ancient and endangered relictual conifer, Wollemia nobilis (Araucariaceae). Mol Ecol 12:2331–2343. https://doi.org/10.1046/j.1365-294X.2003.01926.x

    Article  CAS  PubMed  Google Scholar 

  63. Peres CA, Baider C (1997) Seed dispersal, spatial distribution and population structure of Brazilnut trees ( Bertholletia excelsa) in southeastern Amazonia. J Trop Ecol 13:595–616. https://doi.org/10.1017/S0266467400010749

    Article  Google Scholar 

  64. Quiroga MP, Pacheco S, Malizia LR, Premoli AC (2012) Shrinking forests under warming: evidence of Podocarpus parlatorei (pino del cerro) from the subtropical Andes. J Hered 103:682–691. https://doi.org/10.1093/jhered/ess031

    Article  PubMed  Google Scholar 

  65. R Development Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org

  66. Reis MS, Ladio A, Peroni N (2014) Landscapes with Araucaria in South America: evidence for a cultural dimension. Ecol Soc 19:43. https://doi.org/10.5751/ES-06163-190243

    Article  Google Scholar 

  67. Reitz R, Klein RM (1966) Araucariáceas. In: Reitz R (ed) Flora Ilustrada Catarinense. Herbário Barbosa Rodrigues, Itajaí, p 62

    Google Scholar 

  68. Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM (2009) The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153. https://doi.org/10.1016/j.biocon.2009.02.021

    Article  Google Scholar 

  69. Rossetto M, Ens EJ, Honings T, Wilson PD, Yap JYS, Costello O, Round ER, Bowern C (2017) From songlines to genomes: prehistoric assisted migration of a rain forest tree by Australian aboriginal people. PLoS One 12:e0186663. https://doi.org/10.1371/journal.pone.0186663

    Article  PubMed Central  PubMed  Google Scholar 

  70. Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228

    PubMed Central  CAS  PubMed  Google Scholar 

  71. Rull V, Montoya E (2014) Mauritia flexuosa palm swamp communities: natural or human-made? A palynological study of the gran Sabana region (northern South America) within a neotropical context. Quat Sci Rev 99:17–33. https://doi.org/10.1016/j.quascirev.2014.06.007

    Article  Google Scholar 

  72. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Schlögl PS, de Souza AP, Nodari RO (2007) PCR-RFLP analysis of non-coding regions of cpDNA in Araucaria angustifolia (Bert.) O. Kuntze. Genet Mol Biol 30:423–427. https://doi.org/10.1590/S1415-47572007000300020

    Article  Google Scholar 

  74. Scott LJ, Shepherd MJ, Nikles DG, Henry RJ (2005) Low efficiency of pseudotestcross mapping design was consistent with limited genetic diversity and low heterozygosity in hoop pine (Araucaria cunninghamii, Araucariaceae). Tree Genet Genomes 1:124–134. https://doi.org/10.1007/s11295-005-0022-0

    Article  Google Scholar 

  75. Shepard GH, Ramirez H (2011) “Made in Brazil”: human dispersal of the Brazil nut (Bertholletia excelsa, Lecythidaceae) in ancient Amazonia. Econ Bot 65:44–65. https://doi.org/10.1007/s12231-011-9151-6

    Article  Google Scholar 

  76. Sinclair WT, Morman JD, Ennos RA (1999) The postglacial history of scots pine (Pinus sylvestris L.) in western Europe: evidence from mitochondrial DNA variation. Mol Ecol 8:83–88. https://doi.org/10.1046/j.1365-294X.1999.00527.x

    Article  Google Scholar 

  77. Sousa VA, Sebbenn AM, Hattemer HH, Ziehe M (2005) Correlated mating in populations of a dioecious Brazilian conifer, Araucaria angustifolia (Bert.) O. Ktze. For Genet 12:107–119

    Google Scholar 

  78. Souza AF, Forgiarini C, Longhi SJ, Brena DA (2008) Regeneration patterns of a long-lived dominant conifer and the effects of logging in southern South America. Acta Oecol 34:221–232. https://doi.org/10.1016/j.actao.2008.05.013

    Article  Google Scholar 

  79. Stefenon VM, Gailing O, Finkeldey R (2007) Genetic structure of Araucaria angustifolia (Araucariaceae) populations in Brazil: implications for the in situ conservation of genetic resources. Plant Biol 9:516–525. https://doi.org/10.1055/s-2007-964974

    Article  CAS  PubMed  Google Scholar 

  80. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    PubMed Central  CAS  PubMed  Google Scholar 

  81. Thomas P (2013) Araucaria angustifolia. The IUCN Red List of Threatened Species 2013: e.T32975A2829141. https://doi.org/10.2305/IUCN.UK.2013-1.RLTS.T32975A2829141.en

  82. Thomas E, Alcázar Caicedo C, McMichael CH et al (2015) Uncovering spatial patterns in the natural and human history of Brazil nut (Bertholletia excelsa) across the Amazon Basin. J Biogeogr 42:1367–1382. https://doi.org/10.1111/jbi.12540

    Article  Google Scholar 

  83. Vieira EM, Ribeiro JF, Iob G (2011) Seed predation of Araucaria angustifolia (Araucariaceae) by small rodents in two areas with contrasting seed densities in the Brazilian Araucaria forest. J Nat Hist 45:843–854. https://doi.org/10.1080/00222933.2010.536265

    Article  Google Scholar 

  84. Vieira-da-Silva C, Reis MS (2009) Produção de pinhão na região de Caçador, SC: Aspectos da obtenção e sua importância para comunidades locais. Ciência Florest 19:363–374

    Article  Google Scholar 

  85. Vieira-da-Silva C, Martins G, Steiner N et al (2011) Araucaria angustifolia. In: Coradin L, Reis A, Siminski A (eds) Espécies nativas da flora brasileira de valor econômico atual ou potencial: plantas para o futuro – Região Sul. Ministério do Meio Ambiente, Brasília, pp 134–150

    Google Scholar 

  86. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution (N Y) 38:1358–1370

    CAS  Google Scholar 

  87. Yang Y-X, Wang M-L, Liu Z-L, Zhu J, Yan MY, Li ZH (2016) Nucleotide polymorphism and phylogeographic history of an endangered conifer species Pinus bungeana. Biochem Syst Ecol 64:89–96. https://doi.org/10.1016/j.bse.2015.11.016

    Article  CAS  Google Scholar 

  88. Zar JH (2010) Biostatistical analysis, 5th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Council of Technological and Scientific Development (CNPq), process no. FAPESC/2780/2012-4 (PRONEX), 309128/2014-5 to M.S.R. and 130894/2015-0 to R.C.R., and the Coordination for the Improvement of Higher Education Personnel (CAPES) for the Master’s scholarship to M.B.L. and doctoral scholarships to A.P.B., T.M., and N.C.F.C. We would like to thank Santa Catarina State University (UDESC), Federal University of Santa Catarina (UFSC), and Conservation and Use of Natural Resources (UCRN) and Physiology of Development and Plant Genetics Laboratory (LFDGV) research groups for logistical support, the Chico Mendes Biodiversity Institute (ICMBio), the Conservation Unities Division (DUC), and landowners that authorized and facilitated the sample collection. Additionally, we thank the anonymous reviewers for their effort in providing comments and suggestions, which substantially improved the manuscript.

Author information

Affiliations

Authors

Contributions

This research represents part of a Master’ thesis of M.B.L. M.S.R., A.M. and M.B.L. designed the research; M.B.L., A.P.B., R.C.R., T.M. and N.C.F.C. collected the samples and performed the laboratory procedures; M.B.L. performed the analysis and wrote the draft of the manuscript; all authors reviewed and contributed to the manuscript.

Corresponding author

Correspondence to Miguel Busarello Lauterjung.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Data archiving statement

Individual haplotype sequence data for each intergenic region have been submitted to GenBank: accession numbers MF449534-MF449833 (trnC-trnS), MF449834-MF450132 (trnD-trnT), and MF450133-MF450430 (trnS-trnfM).

Communicated by F. Gugerli

Electronic supplementary material

Supplementary File S1

Supporting ecological evidence (DOCX 271 kb)

Supplementary File S2

Human occupation records inside the Araucaria Forest domain in the past. (DOCX 218 kb)

Supplementary File S3

Coordinates of the 20 Araucaria angustifolia studied populations in southern Brazil. (DOCX 26 kb)

Supplementary File S4

Pairwise FST values (under diagonal) from 20 Araucaria angustifolia populations and their respective p-values (above diagonal). Negative values should be interpreted as zero. (DOCX 35 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lauterjung, M.B., Bernardi, A.P., Montagna, T. et al. Phylogeography of Brazilian pine (Araucaria angustifolia): integrative evidence for pre-Columbian anthropogenic dispersal. Tree Genetics & Genomes 14, 36 (2018). https://doi.org/10.1007/s11295-018-1250-4

Download citation

Keywords

  • Chloroplast DNA
  • Cultural landscape
  • Plant phylogeography
  • Pre-Columbian indigenous people
  • Taquara/Itararé culture