Tree Genetics & Genomes

, 14:32 | Cite as

Genetic identity and diversity of Nigerian cacao genebank collections verified by single nucleotide polymorphisms (SNPs): a guide to field genebank management and utilization

  • Festus O. Olasupo
  • Daniel B. Adewale
  • Peter O. Aikpokpodion
  • Anna A. Muyiwa
  • Ranjana Bhattacharjee
  • Osman A. Gutierrez
  • Juan Carlos Motamayor
  • Raymond J. Schnell
  • Sona Ebai
  • Dapeng Zhang
Original Article
  • 43 Downloads
Part of the following topical collections:
  1. Germplasm Diversity

Abstract

Nigeria is the sixth largest cacao producer in the world. Field performance and quality of cacao hybrid families is largely dependent on the genetic integrity of parental clones obtained in field genebank collections. However, information on the impact of mislabeling on seed garden output in Nigeria is lacking. Using 63 single nucleotide polymorphism (SNP) markers, we analyzed 1457 cacao trees sampled from seven major field genebank plots in Nigeria to assess the genetic integrity in Nigerian cacao germplasm. The procedure of multilocus matching with known reference clones revealed up to 78% mislabeling in recently introduced international germplasm. A high rate of mislabeling was also revealed in the West African local selections and breeding lines, using Bayesian assignment test. The problem of mislabeling has been attributed to errors from the sources of introduction, pre-planting labeling errors, and rootstocks overtaking budded scions due to poor field management. The analysis of genetic diversity revealed a good representation of the available cacao germplasm groups in Nigerian field genebanks, indicating that the genetic base of Nigeria cacao germplasm has been significantly widened through germplasm introductions. However, only a small proportion of the available germplasm in the genebank have been utilized for variety development. This study proved the utility of SNP markers for cleaning up the genebanks and reducing offtypes; thereby providing a strong basis for improving the accuracy and efficiency in cacao genebank management and breeding, as well as for mobilizing improved varieties to cacao farmers in Nigeria.

Keywords

Chocolate tree Genetic integrity Mislabeling Off-types Tropical agriculture West Africa 

Notes

Acknowledgements

The authors express appreciation to the Executive Director of the Cocoa Research Institute of Nigeria for the permission granted to publish this paper. The invaluable support of field and laboratory staff during the execution of this work is gratefully acknowledged. The authors also thank Drs. Sue Mischke and Lyndel Meinhardt, USDA-ARS, for reviewing and editing this manuscript.

Data archiving statement

All row data for the Nigerian germplasm and the reference trees are being submitted to the International Cacao germplasm Database (http://www.icgd.rdg.ac.uk/). The full list of SNP markers and reference cacao accessions are included as Supplementary Materials of this manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

11295_2018_1244_MOESM1_ESM.docx (57 kb)
ESM 1 (DOCX 57 kb)

References

  1. Adewale B, Adeigbe O, Muyiwa A (2016) Cocoa seed garden: a means to disseminating improved planting materials for enhanced national productivity: a review. Agric Rev 37:205–212Google Scholar
  2. Adomako B (2006) Combining ability analysis of blackpod disease incidence in cocoa genotypes in Ghana. Trop Sci 46:201–204CrossRefGoogle Scholar
  3. Aikpokpodion P (2007) Genetic diversity in Nigerian cacao, (Theobroma cacao L.) collections as revealed by phenotypic and simple sequence repeats marker. The University of Ibadan, Nigeria, IbadanGoogle Scholar
  4. Aikpokpodion PO (2012) Defining genetic diversity in the chocolate tree, Theobroma cacao L. grown in West and Central Africa. Genetic diversity in plants. ISBN: 978-953-51-0185-7, InTech  https://doi.org/10.5772/33101. http://www.intechopen.com/books/genetic-diversity-in-plants/defining-genetic-diversity-in-the-chocolate-tree-theobroma-cacao-l-grown-in-west-and-central-africa. Accessed 28 July 2014
  5. Aikpokpodion PO, Adetimirin VO, Ingelbrecht I, Schnell RJ, Kolesnikova-Allen M (2005) Assessment of genetic diversity of cacao, Theobroma cacao L. collections in Nigeria using simple sequence repeat markers. In: Denamany G, Lamin K, Ling A, Maisin N, Ahmad AC, Saripah B, Nuraziawati MY (eds) Sustainable cocoa economy through increase in productivity, efficiency and quality: proceedings of 4th Malaysian International Cocoa Conference, Kuala Lumpur, Malaysia 18th–19th July 2005, Malaysian Cocoa Board, Kota Kinubalu, pp 83–86Google Scholar
  6. Aikpokpodion PO, Motamayor JC, Adetimirin VO, Adu-Ampomah Y, Ingelbrecht I, Eskes AB, Schnell RJ, Kolesnikova-Allen M (2009) Genetic diversity assessment of sub-samples of cacao, Theobroma cacao L. collections in West Africa using simple sequence repeats marker. Tree Genet Genom 5:699–711CrossRefGoogle Scholar
  7. Aikpokpodion PO, Kolesnikova-Allen M, Adetimirin VO, Guiltinan MJ, Eskes A, Motamayor JC, Schnell RJ (2010) Population structure and molecular characterization of Nigerian field genebank collections of cacao, Theobroma cacao L. Silvae Genet 59:273–285Google Scholar
  8. Allegre M, Argout X, Boccara M, Fouet O, Roguet Y, Berard A, Thevenin JM, Chauveau A, Rivallan R, Clement D, Courtois B, Gramacho K, Boland-Auge A, Tahi M, Umaharan P, Brunel D, Lanaud C (2012) Discovery and mapping of a new expressed sequence tag-single nucleotide polymorphism and simple sequence repeat panel for large-scale genetic studies and breeding of Theobroma cacao L. DNA Res 19:23–35CrossRefPubMedGoogle Scholar
  9. Argout X, Fouet O, Wincker P, Gramacho K, Legavre T, Sabau X, Risterucci A, da Silva C, Cascardo J, Allegre M, Kuhn D, Verica J, Courtois B, Loor G, Babin R, Sounigo O, Ducamp M, Guiltinan MJ, Ruiz M, Alemanno L, Machado R, Phillips W, Schnell R, Gilmour M, Rosenquist E, Butler D, Maximova S, Lanaud C (2008) Towards the understanding of the cocoa transcriptome: production and analysis of an exhaustive dataset of ESTs of Theobroma cacao L. generated from various tissues and under various conditions. BMC Genomics 9:512CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bhattacharjee R, Kolesnikova-Allen M, Aikpokpodion P, Taiwo S, Ingelbrecht I (2004) An improved semiautomated rapid method of extracting genomic DNA for molecular marker analysis in cocoa, Theobroma cacao L. Plant Mol Biol Report 22:435–436CrossRefGoogle Scholar
  11. Cervantes-Martinez C, Brown JS, Schnell RJ, Phillips-Mora W, Takrama JF, Motamayor JC (2006) Combining ability for disease resistance, yield, and horticultural traits of cacao (Theobroma cacao L.) clones. J Am Soc Hortic Sci 131:231–241Google Scholar
  12. Cosme-Reyes SM, Cuevas HE, Zhang D, Oleksyk TK, Irish BM (2016) Genetic diversity of naturalized cacao (Theobroma cacao L.) in Puerto Rico. Tree Genet Genomes 12:88.  https://doi.org/10.1007/s11295-016-1045-4 CrossRefGoogle Scholar
  13. DuVal A, Gezan SA, Mustiga G, Stack C, Marelli JP, Chaparro J, Livingstone D, Royaert S, Motamayor JC (2017) Genetic parameters and the impact of off-types for Theobroma cacao L. in a breeding program in Brazil. Front Plant Sci 8:2059.  https://doi.org/10.3389/fpls.2017.02059 eCollection 2017CrossRefPubMedPubMedCentralGoogle Scholar
  14. Efombagan IB, Motamayor JC, Sounigo O, Eskes AB, Nyasse S, Cilas C, Schnell RJ, Manzanares-Dauleux M, Kolesnikova-Allen M (2008) Genetic diversity and structure of farm and genebank accessions of cacao (Theobroma cacao L.) in Cameroon revealed by microsatellite markers. Tree Genet Genomes 4:821–831CrossRefGoogle Scholar
  15. Eskes AB, Efron Y (2006) Global approaches to cocoa germplasm utilization and conservation. Final report of the CFC/ICCO/IPGRI project on “Cocoa germplasm utilization and conservation: a global approach” (1998–2004). CFC, ICCO, IBPGR, AmsterdamGoogle Scholar
  16. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedPubMedCentralGoogle Scholar
  17. Fang W, Meinhardt LW, Mischke BS, Bellato C, Motilal L, Zhang D (2014) Accurate determination of genetic identity for a single cacao bean, using molecular markers with a nanofluidic system, ensures cocoa authenticity and traceability. J Agric Food Chem 62:481–487CrossRefPubMedGoogle Scholar
  18. Figueira A, Janick J, Levy M, Goldsbrough P (1994) Reexamining the classification of Theobroma cacao L. using molecular markers. J Am Soc Hortic Sci 119:1073–1082Google Scholar
  19. Guiltinan MJ, Verica J, Zhang D, Figueira A (2008) Genomics of Theobroma cacao, “the food of the gods”. In: Moore PH, Ming R (eds) Genomics of tropical crop plants. Springer, New York, pp 145–170CrossRefGoogle Scholar
  20. ICCO (2017) Production of cocoa beans. ICCO quarterly bulletin of cocoa statistics, Vol. XLIII, No. 1, Cocoa year 2016/17Google Scholar
  21. Jacob V, Atanda O, Opeke L (1971) Cacao breeding in Nigeria. In: Progress in tree crops research in Nigeria. CRIN commemorative publication pp 23–33Google Scholar
  22. Ji K, Zhang D, Motilal L, Boccara M, Lachenaud P, Meinhardt LW (2012) Genetic diversity and parentage in farmer varieties of cacao (Theobroma cacao L.) from Honduras and Nicaragua as revealed by single nucleotide polymorphism (SNP) markers. Genet Resour Crop Evol 60:441–453.  https://doi.org/10.1007/s10722-012-9847-1 CrossRefGoogle Scholar
  23. Johnson ES, Bekele FL, Brown SJ, Song Q, Zhang D, Meinhardt LW, Schnell RJ (2009) Population structure and genetic diversity of the Trinitario cacao ( L.) from Trinidad and Tobago. Crop Sci 49:564–564CrossRefGoogle Scholar
  24. Kalinowski ST, Manlove KR, Taper ML (2007) ONCOR a computer program for genetic stock identification. Department of Ecology, Montana State University, Bozeman MT 59717. Available: http://www.montana.edu/kalinowski
  25. Kuhn DN, Livingstone D, Main D, Zheng P, Saski C, Feltus FA, Mockaitis K, Farmer AD, May GD, Schnell RJ, Motamayor JC (2012) Identification and mapping of conserved ortholog set (COS) II sequences of cacao and their conversion to SNP markers for marker-assisted selection in Theobroma cacao and comparative genomics studies. Tree Genet Genomes 8:97–111CrossRefGoogle Scholar
  26. Lerceteau E, Robert T, Pétiard V, Crouzillat D (1997) Evaluation of the extent of genetic variability among Theobroma cacao accessions using RAPD and RFLP markers. Theor Appl Genet 95:10–19CrossRefGoogle Scholar
  27. Livingstone DS, Motamayor JC, Schnell RJ, Cariaga K, Freeman B, Meerow AW, Brown JS, Kuhn DN (2011) Development of single nucleotide polymorphism markers in Theobroma cacao and comparison to simple sequence repeat markers for genotyping of Cameroon clones. Mol Breed 27:93–106CrossRefGoogle Scholar
  28. Livingstone DS, Freeman B, Motamayor JC, Schnell RJ, Royaert S, Takrama J, Meerow AW, Kuhn DN (2012) Optimization of a SNP assay for genotyping Theobroma cacao under field conditions. Mol Breed 30:33–52CrossRefGoogle Scholar
  29. Lockwood G, Gyamfi MMO (1979) A note on codes at Tafo, Cocoa Research Institute, Ghana, technical Bulletin No 10. pp 1–61Google Scholar
  30. Lukman ZD, Susilo A, Dinarti D, Bailey BA, Mischke BS, Meinhardt LW (2014) Genetic identity, ancestry and parentage in farmer selections of cacao from Aceh, Indonesia revealed by single nucleotide polymorphism (SNP) markers. Trop Plant Biol 7:133–143CrossRefGoogle Scholar
  31. Motamayor JC, Lachenaud P, da Silva e Mota JW, Loor R, Kuhn DN, Brown JS, Schnell RJ (2008) Geographic and genetic population differentiation of the Amazonian chocolate tree (Theobroma cacao L). PLoS ONE 3:e3311.  https://doi.org/10.1371/journal.pone.0003311 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Motamayor J, Schnell R, Kuhn D (2012) Applying SNP marker technology in the cacao breeding programme in Ghana. Afr Crop Sci J 20:67–75Google Scholar
  33. Motilal LA (2004) The potential of cacao microsatellites amplification across diverse plant taxa. In: Genetic Resources and Biotechnology. Edited by D T, T P, PA B, vol. 2. New Delhi: Regency Publications, pp 24–49Google Scholar
  34. Motilal LA, Butler D (2003) Verification of identities in global cacao germplasm collections. Genet Resour Crop Evol 50:799–807CrossRefGoogle Scholar
  35. Motilal LA, Zhang D, Umaharan P, Mischke S, Mooleedhar V, Meinhardt LW (2010) The relic Criollo cacao in Belize—genetic diversity and relationship with Trinitario and other cacao clones held in the International Cocoa Genebank, Trinidad. Plant Genet Resourc 8:106–115CrossRefGoogle Scholar
  36. N’Goran JAK, Laurent V, Risterucci AM, Lanaud C (2000) The genetic structure of cocoa populations (Theobroma cacao. L.) revealed by RFLP analysis. Euphytica 115(2):83–90CrossRefGoogle Scholar
  37. Padi FK, Ofori A, Takrama J, Djan E, Opoku SY, Dadzie AM, Bhattacharjee R, Motamayor JC, Zhang D (2015) The impact of SNP fingerprinting and parentage analysis on the effectiveness of variety recommendations in cacao. Tree Genet Genomes 11:1–14CrossRefGoogle Scholar
  38. Peakall R, Smouse PE (2006) Genalex 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  39. Peakall R, Smouse PE (2012) GenAlEx 6.5 (2012) genetic analysis in excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539CrossRefPubMedPubMedCentralGoogle Scholar
  40. Posnette AF (1944) Pollination of cacao in Trinidad. Trop Agric (Trinidad) 21(6):115–118Google Scholar
  41. Posnette AF (1986) Fifty years of cocoa research in Trinidad and Tobago. Cocoa Research Unit, University of the West Indies, St. AugustineGoogle Scholar
  42. Pritchard J, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  43. SAS (2011) SAS/STAT software, version 9.3. SAS Institute Inc, CaryGoogle Scholar
  44. Saunders JA, Mischke S, Leamy EA, Hemeida AA (2004) Selection of international molecular standard for DNA fingerprinting. Theor Appl Genet 110:41–47CrossRefPubMedGoogle Scholar
  45. Schnell R, Brown J, Kuhn D, Cervantes-Martinez C, Borrone J, Phillips W, Johnson E, Monteverde-Penso E, Motamayor J, Amores F (2005) Current challenges of tropical tree crop improvement: integrating genomics into an applied cacao breeding program. In: International symposium on biotechnology of temperate fruit crops and tropical species 738:129–144Google Scholar
  46. Sounigo O, Umaharan R, Christopher Y, Sankar A, Ramdahin S (2005) Assessing the genetic diversity in the International Cocoa Genebank, Trinidad (ICG, T) using isozyme electrophoresis and RAPD. Genet Resour Crop Evol 52:1111–1120CrossRefGoogle Scholar
  47. Takrama J, Cervantes-Martinez C, Phillips-Mora W, Brown J, Motamayor J, Schnell R (2005) Determination of off-types in a cocoa breeding programme using microsatellites. Ingenic. Newsletter 10:2–8Google Scholar
  48. Takrama J, Kun J, Meinhardt L, Mischke S, Opuku S, Padi FK, Zhang D (2014) Verification of genetic identity of introduced cacao germplasm in Ghana using single nucleotide polymorphism (SNP) markers. Afr J Biotechnol 13:2127–2136CrossRefGoogle Scholar
  49. Toxopeus H (1964). F3 Amazon in Nigeria. In Annual report of the cocoa research Institute of Nigeria, Ibadan, 1963/64, 13–23. Reprinted 1982: archives of cocoa research 1:179–191Google Scholar
  50. Toxopeus H (1985) Botany, types and populations. In: Wood GAR, Lass RA (eds) Cocoa, 4th edn. Blackwell Science, Oxford, pp 11–37Google Scholar
  51. Waits LP, Luikart G, Taberlet P (2001) Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol 10:249–256CrossRefPubMedGoogle Scholar
  52. Warren J, Kennedy A (1991) Cocoa breeding revisited. Cocoa Growers’ Bull (United Kingdom) 44:18–24Google Scholar
  53. Whitkus R, de la Cruz M, Mota-Bravo L, Gómez-Pompa A (1998) Genetic diversity and relationships of cacao (Theobroma cacao L.) in southern Mexico. Theor Appl Genet 96:621–627CrossRefGoogle Scholar
  54. Zhang D, Arevalo-Gardini E, Mischke S, Zuñiga-Cernades L, Barreto-Chavez A, Del Aguila JA (2006) Genetic diversity and structure of managed and semi-natural populations of cocoa (Theobroma cacao) in the Huallaga and Ucayali valleys of Peru. Ann Bot 98:647–655CrossRefPubMedPubMedCentralGoogle Scholar
  55. Zhang D, Boccara M, Motilal L, Mischke S, Johnson ES, Butler DR, Bailey B, Meinhardt L (2009a) Molecular characterization of an earliest cacao (Theobroma cacao L.) collection from upper Amazon using microsatellite DNA markers. Tree Genet Genomes 5:595–607CrossRefGoogle Scholar
  56. Zhang D, Mischke S, Johnson ES, Phillips-Mora W, Meinhardt L (2009b) Molecular characterization of an international cacao collection using microsatellite markers. Tree Genet Genomes 5:1–10CrossRefGoogle Scholar
  57. Zhang D, Motilal L (2016) Origin, dispersal and current global distribution of cacao genetic diversity. In: Baley BA, Meinhardt LW (eds) Cacao Diseases. Springer International Publishing, Switzerland, p 3–31Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Festus O. Olasupo
    • 1
  • Daniel B. Adewale
    • 2
  • Peter O. Aikpokpodion
    • 3
  • Anna A. Muyiwa
    • 1
  • Ranjana Bhattacharjee
    • 4
  • Osman A. Gutierrez
    • 5
  • Juan Carlos Motamayor
    • 6
  • Raymond J. Schnell
    • 6
  • Sona Ebai
    • 7
  • Dapeng Zhang
    • 8
  1. 1.Crop Improvement DivisionCocoa Research Institute of NigeriaIbadanNigeria
  2. 2.Department of Crop Science and HorticultureFederal UniversityOyeNigeria
  3. 3.Department of Genetics and BiotechnologyUniversity of CalabarCalabarNigeria
  4. 4.Bioscience CenterInternational Institute of Tropical AgricultureIbadanNigeria
  5. 5.USDA-ARS Subtropical Horticulture Research StationMiamiUSA
  6. 6.Mars IncorporatedMiamiUSA
  7. 7.World Cocoa FoundationAccraGhana
  8. 8.USDA-ARS, NEA, BARC, SPCLBeltsvilleUSA

Personalised recommendations