Tree Genetics & Genomes

, 14:19 | Cite as

High gene flow and complex treeline dynamics of Larix Mill. stands on the Taymyr Peninsula (north-central Siberia) revealed by nuclear microsatellites

  • S. Kruse
  • L. S. Epp
  • M. Wieczorek
  • L. A. Pestryakova
  • K. R. Stoof-Leichsenring
  • U. Herzschuh
Original Article
  • 139 Downloads
Part of the following topical collections:
  1. Population structure

Abstract

Arctic treelines are facing a strong temperature increase as a result of recent global warming, causing possible changes in forest extent, which will alter vegetation-climate feedbacks. However, the mode and strength of the response is rather unclear, as potential changes are happening in areas that are very remote and difficult to access, and empirical data are still largely lacking. Here, we assessed the current population structure and genetic differentiation of Larix Mill. tree stands within the northernmost latitudinal treeline reaching ~ 72° N in the southern lowlands of the Taymyr Peninsula (~ 100° E). We sampled 743 individuals belonging to different height classes (seedlings, saplings, trees) at 11 locations along a gradient from ‘single tree’ tundra over ‘forest line’ to ‘dense forest’ stands and conducted investigations applying eight highly polymorphic nuclear microsatellites. Results suggest a high diversity within sub-populations (HE = 0.826–0.893), coupled, however, with heterozygote deficits in all sub-populations, but pronounced in ‘forest line’ stands. Overall, genetic differentiation of sub-populations is low (FST = 0.005), indicating a region-wide high gene flow, although ‘forest line’ stands harbour few rare and private alleles, likely indicating greater local reproduction. ‘Single tree’ stands, located beyond the northern forest line, are currently not involved in treeline expansion, but show signs of a long-term refuge, namely asexual reproduction and change of growth-form from erect to creeping growth, possibly having persisted for thousands of years. The lack of differentiation between the sub-populations points to a sufficiently high dispersal potential, and thus a rapid northward migration of the Siberian arctic treeline under recent global warming seems potentially unconstrained, but observations show it to be unexpectedly slow.

Keywords

Larch Population genetics Boreal forests Tundra-taiga transition Range expansion 

Notes

Acknowledgements

We thank our colleagues from joint Russian-German expeditions for support in the field. Special thanks to Alexey Kolmogorov and Bastian Niemeyer who helped collect samples during field work. We would like to thank Cathy Jenks for proofreading and improving the manuscript and two anonymous reviewers for their suggestions that helped to improve and clarify the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Data archiving statement

Sampling locations, height classes and microsatellite genotype data are available at https://doi.pangaea.de/10.1594/PANGAEA.870947

R-scripts for the performed statistical analyses are stored online at  https://doi.org/10.1594/PANGAEA.885765. These contain the preparation of the resampled datasets as well as the final data as R-objects; functions for reformatting the ‘genind’ objects for subsequent analyses in computer programs outside of the R-framework (CERVUS, STRUCTURE, ML-NULL, GENEPOP, MICRO-CHECKER, STRUCTURE, EEMS). The ‘genind’ objects are the formal class (S4) for individual genotypes in the R package ‘adegenet’. In these objects, we included the population stratification—coding the region of sample origin, the sub-population name and the height class—for each individual sample.

Supplementary material

11295_2018_1235_MOESM1_ESM.docx (3.4 mb)
ESM 1 (DOCX 3493 kb).

References

  1. Abaimov AP (2010) Geographical distribution and genetics of Siberian larch species. In: Osawa A, Zyryanova OA, Matsuura Y, Kajimoto T, Wein RW (eds) Permafrost Ecosystems—Siberian Larch Forests. Springer, Dordrecht, pp 41–58CrossRefGoogle Scholar
  2. Aizawa M, Yoshimaru H, Saito H et al (2009) Range-wide genetic structure in a north-east Asian spruce (Picea jezoensis) determined using nuclear microsatellite markers. J Biogeogr 36:996–1007CrossRefGoogle Scholar
  3. Andreev AA, Siegert C, Klimanov VA et al (2002) Late Pleistocene and Holocene vegetation and climate on the Taymyr Lowland, Northern Siberia. Quat Res 57:138–150CrossRefGoogle Scholar
  4. Arctic Climate Impact Assessment (2004) Impacts of a warming Arctic-Arctic climate impact assessment. Cambridge University Press, CambridgeGoogle Scholar
  5. Arenas M, Ray N, Currat M, Excoffier L (2012) Consequences of range contractions and range shifts on molecular diversity. Mol Biol Evol 29(1):207–218.  https://doi.org/10.1093/molbev/msr187 CrossRefPubMedGoogle Scholar
  6. Ashley MV (2010) Plant parentage, pollination, and dispersal: how DNA microsatellites have altered the landscape. Crit Rev Plant Sci 29(3):148–161.  https://doi.org/10.1080/07352689.2010.481167 CrossRefGoogle Scholar
  7. Bigelow NH, Brubaker LB, Edwards ME et al (2003) Climate change and Arctic ecosystems: 1. Vegetation changes north of 55° N between the last glacial maximum, mid-Holocene, and present. J Geophys Res 108:1–25CrossRefGoogle Scholar
  8. Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320(5882):1444–1449.  https://doi.org/10.1126/science.1155121 CrossRefPubMedGoogle Scholar
  9. Bruvo R, Michiels NK, D’Souza TG, Schulenburg H (2004) A simple method for the calculation of microsatellite genotype distances irrespective of ploidy level. Mol Ecol 13(7):2101–2106.  https://doi.org/10.1111/j.1365-294X.2004.02209.x CrossRefPubMedGoogle Scholar
  10. Burczyk J, DiFazio SP, Adams WT (2004) Gene flow in forest trees: how far do genes really travel? For Genet 11:179–192Google Scholar
  11. Buschbom J, Yanbaev Y, Degen B (2011) Efficient long-distance gene flow into an isolated relict oak stand. J Hered 102:464–472CrossRefPubMedGoogle Scholar
  12. Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24(3):621–631.  https://doi.org/10.1093/molbev/msl191 CrossRefPubMedGoogle Scholar
  13. Chen C, Liewlaksaneeyanawin C, Funda T et al (2009) Development and characterization of microsatellite loci in western larch (Larix occidentalis Nutt.) Mol Ecol Resour 9:843–845CrossRefPubMedGoogle Scholar
  14. Chen J, Tsuda Y, Stocks M, Källman T, Xu N, Kärkkäinen K, Huotari T, Semerikov VL, Vendramin GG, Lascoux M (2014) Clinal variation at phenology-related genes in spruce: parallel evolution in FTL2 and Gigantea? Genetics 197(3):1025–1038.  https://doi.org/10.1534/genetics.114.163063 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chybicki IJ, Burczyk J (2008) Simultaneous estimation of null alleles and inbreeding coefficients. J Hered 100:106–113CrossRefPubMedGoogle Scholar
  16. Corlett RT, Westcott DA (2013) Will plant movements keep up with climate change? Trends Ecol Evol 28(8):482–488.  https://doi.org/10.1016/j.tree.2013.04.003 CrossRefPubMedGoogle Scholar
  17. Culley TM, Weller SG, Sakai AK, Putnam KA (2008) Characterization of microsatellite loci in the Hawaiian endemic shrub Schiedea adamantis (Caryophyllaceae) and amplification in related species and genera. Mol Ecol Resour 8(5):1081–1084.  https://doi.org/10.1111/j.1755-0998.2008.02161.x CrossRefPubMedGoogle Scholar
  18. Davis MA, Douglas MR, Webb CT et al (2015) Nowhere to go but up: impacts of climate change on demographics of a short-range endemic (Crotalus willardi obscurus) in the sky-islands of southwestern North America. PLoS One 10:1–20Google Scholar
  19. Harsch MA, Hulme PE, McGlone MS, Duncan RP (2009) Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol Lett 12(10):1040–1049.  https://doi.org/10.1111/j.1461-0248.2009.01355.x CrossRefPubMedGoogle Scholar
  20. Hartl DL, Clark AG (2007) Principles of population genetics. Sinauer Associates, Inc. Publishers, SunderlandGoogle Scholar
  21. Hedrick PW (2005) A standardized genetic differentiation measure. Evol; Int J Organ Evol 59(8):1633–1638.  https://doi.org/10.1111/j.0014-3820.2005.tb01814.x CrossRefGoogle Scholar
  22. Heller R, Siegismund HR (2009) Relationship between three measures of genetic differentiation GST, DEST and G’ST: how wrong have we been? Mol Ecol 18(10):2080–2083.  https://doi.org/10.1111/j.1365-294X.2009.04185.x CrossRefPubMedGoogle Scholar
  23. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25(15):1965–1978.  https://doi.org/10.1002/joc.1276 CrossRefGoogle Scholar
  24. Holleley CE, Geerts PG (2009) Multiplex Manager 1.0: a cross-platform computer program that plans and optimizes multiplex PCR. BioTechniques 46(7):511–517.  https://doi.org/10.2144/000113156 CrossRefPubMedGoogle Scholar
  25. Holtmeier F-K, Broll G (2005) Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Glob Ecol Biogeogr 14(5):395–410.  https://doi.org/10.1111/j.1466-822X.2005.00168.x CrossRefGoogle Scholar
  26. Holtmeier F-K, Broll G (2007) Treeline advance—driving processes and adverse factors. Landscape Online 1:1–33CrossRefGoogle Scholar
  27. IPCC (2013) Climate change 2013: The physical science basis. In: Stocker TF, Qin D, Plattner G-K et al (eds) Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UKGoogle Scholar
  28. Isoda K, Watanabe A (2006) Isolation and characterization of microsatellite loci from Larix kaempferi. Mol Ecol Notes 6(3):664–666.  https://doi.org/10.1111/j.1471-8286.2006.01291.x CrossRefGoogle Scholar
  29. Jombart T (2008) Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24(11):1403–1405.  https://doi.org/10.1093/bioinformatics/btn129 CrossRefPubMedGoogle Scholar
  30. Jombart T, Ahmed I (2011) Adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27(21):3070–3071.  https://doi.org/10.1093/bioinformatics/btr521 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Jombart T, Devillard S, Balloux F et al (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:1–15CrossRefGoogle Scholar
  32. Jost LOU (2008) GST and its relatives do not measure differentiation. Mol Ecol 17(18):4015–4026.  https://doi.org/10.1111/j.1365-294X.2008.03887.x CrossRefPubMedGoogle Scholar
  33. Kalinowski ST, Taper ML (2006) Maximum likelihood estimation of the frequency of null alleles at microsatellite loci. Conserv Genet 7(6):991–995.  https://doi.org/10.1007/s10592-006-9134-9 CrossRefGoogle Scholar
  34. Kamvar ZN, Tabima JF, Grünwald NJ (2014) Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. Peer J 2:e281.  https://doi.org/10.7717/peerj.281 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kamvar ZN, Brooks JC, Grünwald NJ (2015) Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality. Front Genet 6:1–10CrossRefGoogle Scholar
  36. Kharuk VI, Ranson KJ, Im ST, Naurzbaev MM (2006) Forest-tundra larch forests and climatic trends. Russ J Ecol 37(5):291–298.  https://doi.org/10.1134/S1067413606050018 CrossRefGoogle Scholar
  37. Kharuk VI, Ranson KJ, Im ST, Oskorbin PA, Dvinskaya ML, Ovchinnikov DV (2013) Tree-line structure and dynamics at the northern limit of the larch forest: Anabar plateau, Siberia, Russia. Arct Antarct Alp Res 45(4):526–537.  https://doi.org/10.1657/1938-4246-45.4.526 CrossRefGoogle Scholar
  38. Khasa DP, Newton CH, Rahman MH, Jaquish B, Dancik BP (2000) Isolation, characterization, and inheritance of microsatellite loci in alpine larch and western larch. Genome 43(3):439–448.  https://doi.org/10.1139/g99-131 CrossRefPubMedGoogle Scholar
  39. Kienel U, Siegert C (1999) Late quaternary palaeoenvironmental reconstructions from a permafrost sequence (North Siberian lowland, SE Taymyr Peninsula)—a multidisciplinary case study. Boreas 28(1):181–193.  https://doi.org/10.1111/j.1502-3885.1999.tb00213.x CrossRefGoogle Scholar
  40. Klemm J, Herzschuh U, Pestryakova LA (2016) Vegetation, climate and lake changes over the last 7000 years at the boreal treeline in north-central Siberia. Quat Sci Rev 147:422–434CrossRefGoogle Scholar
  41. Kruse S, Wieczorek M, Jeltsch F, Herzschuh U (2016) Treeline dynamics in Siberia under changing climates as inferred from an individual-based model for Larix. Ecol Model 338:101–121.  https://doi.org/10.1016/j.ecolmodel.2016.08.003 CrossRefGoogle Scholar
  42. Laberge M-J, Payette S, Bousquet J (2000) Life span and biomass allocation of stunted black spruce clones in the subarctic environment. J Ecol 88:584–593CrossRefGoogle Scholar
  43. Louy D, Habel JC, Abadjiev S, Schmitt T (2013) Genetic legacy from past panmixia: high genetic variability and low differentiation in disjunct populations of the eastern large heath butterfly. Biol J Linn Soc 110(2):281–290.  https://doi.org/10.1111/bij.12144 CrossRefGoogle Scholar
  44. MacDonald GM, Gervais BR, Snyder JA, Tarasov GA, Borisova OK (2000a) Radiocarbon dated Pinus sylvestris L. wood from beyond tree-line on the Kola Peninsula, Russia. The Holocene 10(1):143–147.  https://doi.org/10.1191/095968300667807510 CrossRefGoogle Scholar
  45. MacDonald GM, Velichko AA, Kremenetski CV, Borisova OK, Goleva AA, Andreev AA, Cwynar LC, Riding RT, Forman SL, Edwards TWD, Aravena R, Hammarlund D, Szeicz JM, Gattaulin VN (2000b) Holocene treeline history and climate change across northern Eurasia. Quat Res 53(03):302–311.  https://doi.org/10.1006/qres.1999.2123 CrossRefGoogle Scholar
  46. MacDonald G, Kremenetski KV, Beilman D (2008) Climate change and the northern Russian treeline zone. Philos Trans R Soc B: Biol Sci 363(1501):2283–2299.  https://doi.org/10.1098/rstb.2007.2200 CrossRefGoogle Scholar
  47. Marshall JC, Kingsbury BA, Minchella DJ (2009) Microsatellite variation, population structure, and bottlenecks in the threatened copperbelly water snake. Conserv Genet 10(2):465–476.  https://doi.org/10.1007/s10592-008-9624-z CrossRefGoogle Scholar
  48. Meirmans PG, Hedrick PW (2011) Assessing population structure: FST and related measures. Mol Ecol Resour 11(1):5–18.  https://doi.org/10.1111/j.1755-0998.2010.02927.x CrossRefPubMedGoogle Scholar
  49. Micheneau C, Dauby G, Bourland N, Doucet J-L, Hardy OJ (2011) Development and characterization of microsatellite loci in Pericopsis elata (Fabaceae) using a cost-efficient approach. Am J Bot 98:e268–e270CrossRefPubMedGoogle Scholar
  50. Miller CR, Waits LP (2003) The history of effective population size and genetic diversity in the Yellowstone grizzly (Ursus arctos): implications for conservation. Proceedings of the National Academy of Sciences of the United States of America 100:4334–4339CrossRefPubMedPubMedCentralGoogle Scholar
  51. Nei M (1973) Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences of the United States of America 70:3321–3323CrossRefPubMedPubMedCentralGoogle Scholar
  52. Nei M (1977) F-statistics and analysis of gene diversity in subdivided populations. Ann Hum Genet 41(2):225–233.  https://doi.org/10.1111/j.1469-1809.1977.tb01918.x CrossRefPubMedGoogle Scholar
  53. Niemeyer B, Herzschuh U, Pestryakova LA (2015) Vegetation and lake changes on the southern Taymyr Peninsula, northern Siberia, during the last 300 years inferred from pollen and Pediastrum green algae records. The Holocene 25:596–606CrossRefGoogle Scholar
  54. Nishimura M, Setoguchi H (2011) Homogeneous genetic structure and variation in tree architecture of Larix kaempferi along altitudinal gradients on Mt. Fuji. J Plant Res 124(2):253–263.  https://doi.org/10.1007/s10265-010-0370-1 CrossRefPubMedGoogle Scholar
  55. Oksanen J, Blanchet FG, Friendly M et al. (2016) Vegan: community ecology packageGoogle Scholar
  56. Oreshkova NV, Belokon MM, Jamiyansuren S (2013) Genetic diversity, population structure, and differentiation of Siberian larch, Gmelin larch, and Cajander larch on SSR-marker data. Russ J Genet 49(2):178–186.  https://doi.org/10.1134/S1022795412120095 CrossRefGoogle Scholar
  57. Oreshkova NV, Sedel’nikova TS, Pimenov AV, Efremov SP (2014) Analysis of genetic structure and differentiation of the bog and dry land populations of Pinus sibirica du tour based on nuclear microsatellite loci. Russ J Genet 50(9):934–941.  https://doi.org/10.1134/S1022795414090105 CrossRefGoogle Scholar
  58. Oreshkova NV, Vetrova VP, Sinelnikova NV (2015) Genetic and phenotypic diversity of Larix cajanderi Mayr in the north of the Russian Far East. Contemp Probl Ecol 8(1):9–20.  https://doi.org/10.1134/S1995425515010096 CrossRefGoogle Scholar
  59. Park H, Kim Y, Kimball JS (2016) Widespread permafrost vulnerability and soil active layer increases over the high northern latitudes inferred from satellite remote sensing and process model assessments. Remote Sens Environ 175:349–358CrossRefGoogle Scholar
  60. Petkova D, Novembre J, Stephens M (2016) Visualizing spatial population structure with estimated effective migration surfaces. Nat Genet 48:94–100CrossRefPubMedGoogle Scholar
  61. Piotti A, Leonardi S, Piovani P, Scalfi M, Menozzi P (2009) Spruce colonization at treeline: where do those seeds come from? Heredity 103:136–145CrossRefPubMedGoogle Scholar
  62. Pluess AR (2011) Pursuing glacier retreat: genetic structure of a rapidly expanding Larix decidua population. Mol Ecol 20(3):473–485.  https://doi.org/10.1111/j.1365-294X.2010.04972.x CrossRefPubMedGoogle Scholar
  63. Polezhaeva MA, Lascoux M, Semerikov VL (2010) Cytoplasmic DNA variation and biogeography of Larix Mill. in Northeast Asia. Mol Ecol 19:1239–1252CrossRefPubMedGoogle Scholar
  64. Polezhaeva MA, Semerikov VL, Pimenova EA (2013) Genetic diversity of larch at the north of Primorskii Krai and limits of Larix olgensis A. Henry distribution. Russ J Genet 49(5):497–502.  https://doi.org/10.1134/S1022795413030149 CrossRefGoogle Scholar
  65. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna https://www.R-project.org/ Google Scholar
  66. Ray N, Excoffier L (2010) A first step towards inferring levels of long-distance dispersal during past expansions. Mol Ecol Resour 10(5):902–914.  https://doi.org/10.1111/j.1755-0998.2010.02881.x CrossRefPubMedGoogle Scholar
  67. Rousset F (2008) GENEPOP’007: a complete re-implementation of the GENEPOP software for windows and Linux. Mol Ecol Resour 8(1):103–106.  https://doi.org/10.1111/j.1471-8286.2007.01931.x CrossRefPubMedGoogle Scholar
  68. Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments: a poor man’s approach to genotyping for research and high-throughput diagnostics. Nat Biotechnol 18(2):233–234.  https://doi.org/10.1038/72708 CrossRefPubMedGoogle Scholar
  69. Selkoe KA, Toonen RJ (2006) Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett 9(5):615–629.  https://doi.org/10.1111/j.1461-0248.2006.00889.x CrossRefPubMedGoogle Scholar
  70. Semerikov VL, Lascoux M (2003) Nuclear and cytoplasmic variation within and between Eurasian Larix (Pinaceae). Am J Bot 90(8):1113–1123.  https://doi.org/10.3732/ajb.90.8.1113 CrossRefPubMedGoogle Scholar
  71. Semerikov VL, Polezhaeva MA (2007) Mitochondrial DNA variation pattern in larches of eastern Siberia and the Far East. Russ J Genet 43(6):646–652.  https://doi.org/10.1134/S1022795407060075 CrossRefGoogle Scholar
  72. Semerikov VL, Semerikov LF, Lascoux M (1999) Intra- and interspecific allozyme variability in Eurasian Larix Mill. species. Heredity 82(2):193–204.  https://doi.org/10.1038/sj.hdy.6884710 CrossRefGoogle Scholar
  73. Semerikov VL, Semerikova SA, Polezhaeva MA, Kosintsev PA, Lascoux M (2013) Southern montane populations did not contribute to the recolonization of West Siberian plain by Siberian larch (Larix sibirica): a range-wide analysis of cytoplasmic markers. Mol Ecol 22(19):4958–4971.  https://doi.org/10.1111/mec.12433 CrossRefPubMedGoogle Scholar
  74. Shaw PW, Pierce GJ, Boyle PR (1999) Subtle population structuring within a highly vagile marine invertebrate, the veined squid Loligo forbesi, demonstrated with microsatellite DNA markers. Mol Ecol 8(3):407–417.  https://doi.org/10.1046/j.1365-294X.1999.00588.x CrossRefGoogle Scholar
  75. Shinde D, Lai Y, Sun F, Arnheim N (2003) Taq DNA polymerase slippage mutation rates measured by PCR and quasi-likelihood analysis: (CA/GT)n and (A/T)n microsatellites. Nucleic Acids Res 31(3):974–980.  https://doi.org/10.1093/nar/gkg178 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Svendsen J (2004) Late quaternary ice sheet history of northern Eurasia. Quat Sci Rev 23(11-13):1229–1271.  https://doi.org/10.1016/j.quascirev.2003.12.008 CrossRefGoogle Scholar
  77. Tsuda Y, Chen J, Stocks M, Källman T, Sønstebø JH, Parducci L, Semerikov V, Sperisen C, Politov D, Ronkainen T, Väliranta M, Vendramin GG, Tollefsrud MM, Lascoux M (2016) The extent and meaning of hybridization and introgression between Siberian spruce (Picea obovata) and Norway spruce (Picea abies): cryptic refugia as stepping stones to the west? Mol Ecol 25(12):2773–2789.  https://doi.org/10.1111/mec.13654 CrossRefPubMedGoogle Scholar
  78. Tsuda Y, Semerikov V, Sebastiani F, Vendramin GG, Lascoux M (2017) Multispecies genetic structure and hybridization in the Betula genus across Eurasia. Mol Ecol 26(2):589–605.  https://doi.org/10.1111/mec.13885 CrossRefPubMedGoogle Scholar
  79. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4(3):535–538.  https://doi.org/10.1111/j.1471-8286.2004.00684.x CrossRefGoogle Scholar
  80. Wagner S, Gerber S, Petit RJ (2012) Two highly informative dinucleotide SSR multiplexes for the conifer Larix decidua (European larch). Mol Ecol Resour 12:717–725CrossRefPubMedGoogle Scholar
  81. Walker DA, Raynolds MK, Daniëls FJA, Einarsson E, Elvebakk A, Gould WA, Katenin AE, Kholod SS, Markon CJ, Melnikov ES, Moskalenko NG, Talbot SS, Yurtsev BA, The other members of the CAVM Team (2005) The circumpolar Arctic vegetation map. J Veg Sci 16(3):267–282.  https://doi.org/10.1111/j.1654-1103.2005.tb02365.x CrossRefGoogle Scholar
  82. Wandeler P, Smith S, Morin PA, Pettifor RA, Funk SM (2003) Patterns of nuclear DNA degeneration over time—a case study in historic teeth samples. Mol Ecol 12(4):1087–1093.  https://doi.org/10.1046/j.1365-294X.2003.01807.x CrossRefPubMedGoogle Scholar
  83. Wattier R, Engel CR, Saumitou-Laprade P, Valero M (1998) Short allele dominance as a source of heterozygote deficiency at microsatellite loci: experimental evidence at the dinucleotide locus Gv1CT in Gracilaria gracilis (Rhodophyta). Mol Ecol 7(11):1569–1573.  https://doi.org/10.1046/j.1365-294x.1998.00477.x CrossRefGoogle Scholar
  84. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38(6):1358–1370.  https://doi.org/10.1111/j.1558-5646.1984.tb05657.x PubMedGoogle Scholar
  85. Wessel P, Smith WHF (1996) A global, self-consistent, hierarchical, high-resolution shoreline database. J Geophys Res: Solid Earth 101(B4):8741–8743.  https://doi.org/10.1029/96JB00104 CrossRefGoogle Scholar
  86. Wetterich S, Rudaya N, Tumskoy V, Andreev AA, Opel T, Schirrmeister L, Meyer H et al (2011) Last glacial maximum records in permafrost of the east Siberian Arctic. Quat Sci Rev 30(21-22):3139–3151.  https://doi.org/10.1016/j.quascirev.2011.07.020 CrossRefGoogle Scholar
  87. Wieczorek M, Kruse S, Epp LS, Kolmogorov A, Nikolaev AN, Heinrich I, Jeltsch F, Pestryakova LA, Zibulski R, Herzschuh U (2017) Dissimilar responses of larch stands in northern Siberia to increasing temperatures—a field and simulation based study. Ecology 98(9):2343–2355.  https://doi.org/10.1002/ecy.1887 CrossRefPubMedGoogle Scholar
  88. Zibulski R, Herzschuh U, Pestryakova LA (2016) Vegetation patterns along micro-relief and vegetation type transects in polygonal landscapes of the Siberian Arctic. J Veg Sci 27:377–386CrossRefGoogle Scholar
  89. Zyryanova OA, Abaimov AP, Daimaru H, Matsuura Y (2010) Floristic diversity and its geographical background in Central Siberia. In: Osawa A, Zyryanova OA, Matsuura Y, Kajimoto T, Wein RW (eds) Permafrost ecosystems—Siberian larch forests. Ecological studies. Springer Netherlands, Dordrecht, pp 17–39Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Polar Terrestrial Environmental Systems Research GroupAlfred Wegener Institute Helmholtz Centre for Polar and Marine ResearchPotsdamGermany
  2. 2.Institute of Biology and BiochemistryUniversity of PotsdamPotsdamGermany
  3. 3.Institute of Earth and Environmental ScienceUniversity of PotsdamPotsdamGermany
  4. 4.Institute of Natural SciencesNorth-Eastern Federal University of YakutskYakutskRussia

Personalised recommendations