Advertisement

Tree Genetics & Genomes

, 14:17 | Cite as

Morphological diversity and phylogeography of the Georgian durmast oak (Q. petraea subsp. iberica) and related Caucasian oak species in Georgia (South Caucasus)

  • Jana Ekhvaia
  • Marco Cosimo Simeone
  • Nana Silakadze
  • Otar Abdaladze
Original Article
  • 169 Downloads
Part of the following topical collections:
  1. Taxonomy

Abstract

The Caucasus region is one of the 25 global biodiversity hotspots and constitutes a shelter area for Neogene relict species as well as a center of ongoing radiation. In order to elucidate the taxonomic identity, divergence patterns, and evolutionary history of the largely widespread Georgian durmast oak (Quercus petraea subsp. iberica), we examined leaf morphology and chloroplast DNA (cpDNA) (trnH-psbA, trnK-matK) sequence variation across its South Caucasian range. Six other oak taxa distributed throughout Georgia were included in the dataset and used for comparison. Evidence for differentiation in both sets of traits was found. Populations represented by different taxa from ecologically equivalent areas showed common morphological features and genetic structures. Molecular analysis clearly indicated the presence of two major haplotype lineages (West Caucasian vs. East Caucasian zonation type) and suggested a maternal lineage diversification of Q. petraea subsp. iberica in the Late Miocene, as a likely result of complex patterns associated with major orogenic and climatic changes. The Quaternary glacial oscillations resulted in a number of less common, derived haplotypes. Based on mismatch distribution analysis and neutrality tests, we found no evidence of demographic expansion for the populations from the West and East Caucasian zonation types. The two Caucasian provinces therefore acted as important shelter/diversification areas and as a lineage crossroad for the Georgian oaks. Close intra- and interspecific cpDNA relationships shared with other oaks from bordering countries support the relevant role played by the Colchis region as a primary refugium for the European temperate forest species.

Keywords

Quercus South Caucasus Leaf morphology cpDNA variation Phylogeography Population structure 

Notes

Data archiving statement

All sequence data generated as part of this study are available on GenBank (http://www.ncbi.nlm.nih.gov/genbank/) under accession numbers LT718008–LT718100 and LT718101–LT718193. All other relevant information and data are included in the paper and its Supplementary Files.

Funding information

This work was supported by the Erasmus Mundus Action II ALRAKIS (Lot 7, No. 20112577).

Supplementary material

11295_2018_1232_Fig4_ESM.gif (2.6 mb)
Fig. S1

Map of Georgia with distribution of seven Caucasian oak taxa according to herbarium data from Institute of Botany, Ilia State University, Tbilisi, Georgia. Protection of lowlands from the northern cold air masses (by the Greater Caucasus), from dry and hot southern air masses (by the Lesser Caucasus), and proximity to the Black Sea created suitable conditions for the development of thermophilous and humid subtropical forests in the western part of the country. In contrast, the more continental climate of middle- and high-mountain zones and protection from western humid air masses by the Likhi mountain chain allowed the distribution of more continental, moderately thermophilous and relatively more frost-resistant coniferous and broad-leaved deciduous forests in both zones. Blue triangles = Q. petraea subsp. iberica, light blue squares = Q. petraea subsp. dshorochensis, yellow circles = Q. macranthera, red triangles = Q. robur subsp. imeretina, green squares = Q. robur subsp. pedunculiflora, grey triangles = Q. hartwissiana, violet squares = Q. pontica. (GIF 2706 kb)

11295_2018_1232_MOESM1_ESM.tif (4 mb)
High resolution image (TIFF 4090 kb)
11295_2018_1232_MOESM2_ESM.docx (14 kb)
Table S2 Eigenvalues, percentages of explained variance, cumulative percentage of explained variance, contribution of the variables to the first three principal components and communality (extraction coefficient) values of each leaf character in 6 Caucasian oak taxa. (DOCX 14 kb)
11295_2018_1232_MOESM3_ESM.docx (15 kb)
Table S3 TrnK-matK and trnH-psbA sequences downloaded from NCBI and used in the molecular analysis. (DOCX 14 kb)
11295_2018_1232_MOESM4_ESM.docx (15 kb)
Table S4 Nucleotide variation and relative frequency of 13 cpDNA haplotypes of Georgian oak taxa combined with East European-West Asian oak samples (N = 108). (DOCX 14 kb)
11295_2018_1232_MOESM5_ESM.xlsx (10.1 mb)
File S5A Goodness-of-fit test and additional information of the BEAST analysis. (XLSX 10325 kb)
11295_2018_1232_MOESM6_ESM.rar (964 kb)
File S5B BEAST log file output. (PARTIAL 963 kb)

References

  1. Adamia S, Zakariadze G, Chkotua T, Sadradze N, Tsereteli N, Chabukiani A, Gventsadze A (2011) Geology of the Caucasus: a review. Turkish J Earth Sci 20:489–544Google Scholar
  2. Aoki K, Suzuki T, Hsu TW, Murakamu N (2004) Phylogeography of the component species of broad-leaved evergreen forests in Japan based on chloroplast DNA variation. J Plant Res 117(1):77–94.  https://doi.org/10.1007/s10265-003-0132-4 CrossRefPubMedGoogle Scholar
  3. Bandelt HJ, Forster P, Rӧhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16(1):37–48CrossRefPubMedGoogle Scholar
  4. Bruschi P, Vendramin GG, Bussotti F, Grossoni P (2003) Morphological and molecular diversity among Italian populations of Quercus petraea (Fagaceae). Ann Bot 91(6):707–716.  https://doi.org/10.1093/aob/mcq075 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Burban C, Petit RJ, Carcreff E, Jactel H (1999) Range wide variation of the maritime pine bast scale Matsucoccus feytaudi Duc. (Homoptera: Matsucoccidae) in relation to the genetic structure of its host. Mol Ecol 8(10):1593–1602.  https://doi.org/10.1046/j.1365-294x.1999.00739.x CrossRefPubMedGoogle Scholar
  6. Burger WC (1975) The species concept in Quercus. Taxon 24(1):45–50.  https://doi.org/10.2307/1218998 CrossRefGoogle Scholar
  7. Camus A (1936–1954) Les chênes. Monographie du genre Quercus et monographie du genre Lithocarpus. Enciclopedie Economique de Sylviculture, Vol. VI, VII, VIII. Lechevalier, ParisGoogle Scholar
  8. Comes HP, Kadreit JK (1998) The effects of Quaternary climatic changes on plant distribution and evolution. Trends Plant Sci 3(11):432–438.  https://doi.org/10.1016/S1360-1385(98)01327-2 CrossRefGoogle Scholar
  9. Comps B, Gömöry D, Letouzey J, Thiébaut B, Petit RJ (2001) Diverging trends between heterozygosity and allelic richness during postglacial colonization in the European beech. Genetics 157(1):389–397PubMedPubMedCentralGoogle Scholar
  10. Crepet WL, Nixon KC (1989) Extinct transitional Fagaceae from the Oligocene and their phylogenetic implications. Am J Bot 76(10):1493–1505.  https://doi.org/10.2307/2444437 CrossRefGoogle Scholar
  11. Curtu A, Gailing O, Finkeldey R (2007) Evidence for hybridization and introgression within a species-rich oak (Quercus ssp.) community. BMC Evol Biol 7:218CrossRefPubMedPubMedCentralGoogle Scholar
  12. Curtu AL, Gailing O, Finkeldey R (2009) Patterns of contemporary hybridization inferred from paternity analysis in a four-oak-species forest. BMC Evol Biol 9:284CrossRefPubMedPubMedCentralGoogle Scholar
  13. Daneck H, Abraham V, Fér T, Marhold K (2011) Phylogeography of Lonicera nigra in Central Europe inferred from molecular and pollen evidence. Preslia 83:237–257Google Scholar
  14. Denk T, Grimm GW (2010) The oaks of Western Eurasia: traditional classifications and evidence from two nuclear markers. Taxon 59(2):351–366Google Scholar
  15. Denk T, Velitzelos D, Güner TH, Bouchal JM, Grímsson F, Grimm GM (2017) Taxonomy and paleoecology of two widespread Eurasian Neogene sclerophyllous oak species: Quercus drymeja Unger and Q. mediterranea Unger. Rev Palaeobot Palynol 241:98–128CrossRefGoogle Scholar
  16. Dodd RS, Afzal-Rafii Z (2004) Selection and dispersal in a multispecies oak hybrid zone. Evolution 58(2):261–269.  https://doi.org/10.1111/j.0014-3820.2004.tb01643.x CrossRefPubMedGoogle Scholar
  17. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7(1):214.  https://doi.org/10.1186/1471-2148-7-214 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Du FK, Hou M, Wang W, Mao K, Hampe A (2017) Phylogeography of Quercus aquifolioides provides novel insights into the Neogene history of a major global hotspot of plant diversity in south-west China. J Biogeogr 44(2):294–307.  https://doi.org/10.1111/jbi.12836 CrossRefGoogle Scholar
  19. Etterson JR, Shaw RG (2001) Constraint to adaptive evolution in response to global warming. Science 294(5540):151–154.  https://doi.org/10.1126/science.1063656 CrossRefPubMedGoogle Scholar
  20. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10(3):564–567.  https://doi.org/10.1111/j.1755-0998.2010.02847.x CrossRefPubMedGoogle Scholar
  21. Excoffier L, Foll M, Petit RG (2009) Genetic consequences of range expansions. Ann Rev Ecol Evol Syst 40(1):481–501.  https://doi.org/10.1146/annurev.ecolsys.39.110707.173414 CrossRefGoogle Scholar
  22. Ferris C, King R, Vainola R, Hewitt GM (1998) Chloroplast DNA recognizes three refugial sources of European oaks and suggests independent eastern and western immigrations to Finland. Heredity 80(5):584–593.  https://doi.org/10.1046/j.1365-2540.1998.00342.x CrossRefPubMedGoogle Scholar
  23. Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147(2):915–925PubMedPubMedCentralGoogle Scholar
  24. Gavin DG, Fitzpatrick MC, Gugger PF, Heath KD, Rodríguez-Sánchez F, Dobrowski SZ, Hampe A, Hu FS, Ashcroft MB, Bartlein PJ, Blois JL (2014) Climate refugia: joint inference from fossil records, species distribution models and phylogeography. New Phytol 204(1):37–54.  https://doi.org/10.1111/nph.12929 CrossRefPubMedGoogle Scholar
  25. Gegechkori AM (2011) The results of biogeographical study of Arcto-Tertiary refugia (Colchis and Talysh) of Southern Caucasus. Annals of Agrarian Science 9(1):1–30Google Scholar
  26. Grímsson F, Grimm GW, Meller B, Bouchal JM, Zetter R (2016) Combined LM and SEM study of the Middle Miocene (Sarmatian) palynoflora from the Lavanttal Basin, Austria: part IV. Magnoliophyta 2–Fagales to Rosales. Grana 55(2):101–163.  https://doi.org/10.1080/00173134.2015.1096566 CrossRefGoogle Scholar
  27. Grossheim AA (1948) Vegetation of the Caucasus (Rastitelnyi pokrov Kavkaza). Publisher house Naturalists Moscow Society, Moscow (in Russian)Google Scholar
  28. Gugger PF, Ikegami M, Sork VL (2013) Influence of late Quaternary climate change on present patterns of genetic variation in valley oak, Quercus lobata Nee. Mol Ecol 22(13):3598–3612.  https://doi.org/10.1111/mec.12317 CrossRefPubMedGoogle Scholar
  29. Harpending HC (1994) Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Hum Biol 66(4):591–600PubMedGoogle Scholar
  30. Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc 58(3):247–369.  https://doi.org/10.1111/j.1095-8312.1996.tb01434.x CrossRefGoogle Scholar
  31. Hewitt GM (1999) Post-glacial re-colonization of European biota. Biol J Linn Soc 68(1-2):87–112.  https://doi.org/10.1111/j.1095-8312.1999.tb01160.x CrossRefGoogle Scholar
  32. Hewitt GM (2000) The genetic legacy of the Quaternary ice ages. Nature 405(6789):907–913.  https://doi.org/10.1038/35016000 CrossRefPubMedGoogle Scholar
  33. Hutchinson DW, Templeton AR (1999) Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of variability. Evolution 53(6):1898–1914.  https://doi.org/10.1111/j.1558-5646.1999.tb04571.x CrossRefGoogle Scholar
  34. Jiang XL, Deng M, Li Y (2016) Evolutionary history of subtropical evergreen broad-leaved forest in Yunnan Plateau and adjacent areas: an insight from Quercus schottkyana (Fagaceae). Tree Genet Genomes 12(6):104.  https://doi.org/10.1007/s11295-016-1063-2 CrossRefGoogle Scholar
  35. Kelchner SA, Thomas MA (2007) Model use in phylogenetics: nine key questions. Trends Ecol Evol 22(2):87–94.  https://doi.org/10.1016/j.tree.2006.10.004 CrossRefPubMedGoogle Scholar
  36. Kikvidze A, Ohsawa M (2001) Richness of Colchic vegetation: comparison between refugia of South-western and East Asia. BMC Ecol 1(6):6.  https://doi.org/10.1186/1472-6785-1-6 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kotlík P, Deffontaine V, Mascheretti S, Zima J, Michaux JR, Searle JB (2006) A northern glacial refugium for bank voles (Clethrionomys glareolus). Proc Natl Acad Sci U S A 103(40):14860–14864.  https://doi.org/10.1073/pnas.0603237103 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Kozlowski G, Gratzfeld J (2013) Zelkova—ancient tree: global status and conservation action. Natural History Museum, FribourgGoogle Scholar
  39. Kremer A, Kleinschmit J, Cottrell J, Cundall EP, Deans JD, Ducousso A, König AO, Lowe AJ, Munro RC, Petit RJ, Stephan BR (2002) Is there a correlation between chloroplastic and nuclear divergence, or what are the roles of history and selection on genetic diversity in European oaks? Forest Ecol Manag 156(1):75–87.  https://doi.org/10.1016/S0378-1127(01)00635-1 CrossRefGoogle Scholar
  40. Kvacek Z, Teodoridis V (2007) Tertiary macrofloras of the Bohemian Massif: a review with correlations within Boreal and Central Europe. Bull Geosci 82:383–408.  https://doi.org/10.3140/bull.geosci.2007.04.383 CrossRefGoogle Scholar
  41. Lagache L, Klein EK, Guichoux E, Petit RJ (2013) Fine-scale environmental control of hybridization in oaks. Mol Ecol 22(2):423–436.  https://doi.org/10.1111/mec.12121 CrossRefPubMedGoogle Scholar
  42. Lepais O, Petit RJ, Guichoux E, Lavabre E, Alberto F, Kremer A, Gerber S (2009) Species relative abundance and direction of introgression in oaks. Mol Ecol 18(10):2228–2242.  https://doi.org/10.1111/j.1365-294X.2009.04137.x CrossRefPubMedGoogle Scholar
  43. Leroy SAG, Arpe K (2007) Glacial refugia for summer-green trees in Europe and South-west Asia as proposed by ECHAM3 time-slice atmospheric model simulations. J Biogeogr 34(12):2115–2128.  https://doi.org/10.1111/j.1365-2699.2007.01754.x CrossRefGoogle Scholar
  44. Librado P, Rozas J (2009) DnaSP v5: software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25(11):1451–1452.  https://doi.org/10.1093/bioinformatics/btp187 CrossRefPubMedGoogle Scholar
  45. Liu HZ, Takeichi Y, Koichi K, Harada K (2013) Phylogeography of Quercus phillyraeoides (Fagaceae) in Japan as revealed by chloroplast DNA variation. J For Res 18(4):361–370.  https://doi.org/10.1007/s10310-012-0357-y CrossRefGoogle Scholar
  46. Maharramova E (2015) Genetic diversity and population structure of the relict forest trees Zelkova carpinifolia (Ulmaceae) and Pterocarya fraxinifolia (Juglandaceae) in the South Caucasus. Dissertation, the Freie University of BerlinGoogle Scholar
  47. Mattioni C, Martin MA, Pollegioni P, Cherubini M, Villani F (2013) Microsatellite markers reveal a strong geographical structure in European populations of Castanea sativa (Fagaceae): evidence for multiple glacial refugia. Am J Bot 100(5):951–961.  https://doi.org/10.3732/ajb.1200194 CrossRefPubMedGoogle Scholar
  48. Médail F, Diadema K (2009) Glacial refugia influence plant diversity patterns in the Mediterranean Basin. J Biogeogr 36(7):1333–1345.  https://doi.org/10.1111/j.1365-2699.2008.02051.x CrossRefGoogle Scholar
  49. Menitsky YL (2005) Oaks of Asia. Science Publishers of Enfield Press, USAGoogle Scholar
  50. Milanovsky EE (1968) The newest tectonics of the Caucasus (Noveishaia tektonika Kavkaza). Russia, Publisher house “Nedra” (in Russian)Google Scholar
  51. Mostajeran F, Yousefzadeh H, Davitashvili N, Kozlowski G, Akbarina M (2016) Phylogenetic relationships of Pterocarya (Juglandaceae) with an emphasis on the taxonomic status of Iranian populations using ITS and trnH-psbA sequence data. Plant Biosyst 151(6):1012–1021.  https://doi.org/10.1080/11263504.2016.1219416 CrossRefGoogle Scholar
  52. Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403(6772):853–858.  https://doi.org/10.1038/35002501 CrossRefPubMedGoogle Scholar
  53. Nakhutsrishvili G (2013) The vegetation of Georgia (South Caucasus). Springer, Berlin.  https://doi.org/10.1007/978-3-642-29915-5 CrossRefGoogle Scholar
  54. Neiber MT, Hausdorf B (2015) Phylogeography of the land snail genus Circassina (Gastropoda: Hygromiide) implies multiple Pleistocene refugia in the Western Caucasus region. Mol Phylogenet Evol 93:129–142.  https://doi.org/10.1016/j.ympev.2015.07.012 CrossRefPubMedGoogle Scholar
  55. Ohlemüller R, Huntley B, Normand S, Svenning JC (2012) Potential source and sink locations for climate-driven species range shifts in Europe since the Last Glacial Maximum. Glob Ecol Biogeogr 21(2):152–163.  https://doi.org/10.1111/j.1466-8238.2011.00674.x CrossRefGoogle Scholar
  56. Olalde M, Herrán A, Espinel S, Goicoechea P (2002) White oaks phylogeny in the Iberian Peninsula. For Ecol Manag 156(1-3):89–102.  https://doi.org/10.1016/S0378-1127(01)00636-3 CrossRefGoogle Scholar
  57. Ortego J, Gugger PF, Sork VL (2015) Climatically stable landscapes predict patterns of genetic structure and admixture in the Californian canyon live oak. J Boigeogr 42(2):328–338.  https://doi.org/10.1111/jbi.12419 CrossRefGoogle Scholar
  58. Palamerov E, Tsenov B (2004) Genus Quercus in the Late Miocene flora of Baldevo Formation (Southwest Bulgaria): taxonomical composition and paleoecology. Phytologia Balcanica 10(2–3):147–156Google Scholar
  59. Papini A, Simeone MC, Bellarosa R, Spada F, Schirone B (2011) Quercus macranthera Fisch. & Mey. ex Hohen. and Quercus iberica M. Bieb.: taxonomic definition and systematic relationships with European oaks inferred from nuclear ITS data. Plant Biosyst 145(1):37–49.  https://doi.org/10.1080/11263504.2010.502684 CrossRefGoogle Scholar
  60. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Bioinformatics 28(19):2537–2539.  https://doi.org/10.1093/bioinformatics/bts460 CrossRefGoogle Scholar
  61. Petit RJ, Brewer S, Bordac S, Burg K, Chedaddi R, Coart E, Cortell J, Gsaikl UM, van Dam B, Deans JD, Espinel S, Fineschi S, Finkeldey R, Glaza I, Goicoechea PG, Jensen JS, König AO, Lowe AJ, Madsen SF, Mátyás G, Munro RC, Popescua F, Slade D, Tabbener H, de Vries SGM, Ziegenhageno B, de Beaulieub JL, Kremer A (2002) Identification of refugia and post-glacial colonization routes of European white oaks based on chloroplast DNA and fossil pollen evidence. For Ecol Manag 156(1-3):49–74.  https://doi.org/10.1016/S0378-1127(01)00634-X CrossRefGoogle Scholar
  62. Petit RJ, Aguinagalde I, de Beaulieu JL, Bittkau C, Brewer S, Cheddadi R, Ennos R, Fineschi S, Grivet D, Lascoux M, Mohanty A, Müller-Stark G, Demesure-Musch B, Palmé A, Martín JP, Rendell S, Vendramin GG (2003) Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300(5625):1563–1565CrossRefPubMedGoogle Scholar
  63. Petit RJ, Bodenes C, Ducousso A, Roussel G, Kremer A (2004) Hybridization as a mechanism of invasion in oaks. New Phytol 161(1):151–164CrossRefGoogle Scholar
  64. Pokryszko BM, Cameron RAD, Mumladze L, Tarkhnishvili D (2011) Forest snail faunas from Georgian Transcaucasia: patterns of diversity in a Pleistocene refugium. Biol J Linn Soc 102(2):239–250.  https://doi.org/10.1111/j.1095-8312.2010.01575.x CrossRefGoogle Scholar
  65. Pons O, Petit RJ (1995) Estimation, variance and optimal sampling of gene diversity. Theor Appl Genet 90(3):462–470PubMedGoogle Scholar
  66. Pons O, Petit RJ (1996) Measuring and testing genetic differentiation with ordered versus unordered alleles. Genetics 144(3):1237–1245PubMedPubMedCentralGoogle Scholar
  67. Posada D, Crandall KA (2001) Selecting the best fit-model of nucleotide substitution. Syst Biol 50(4):580–601.  https://doi.org/10.1080/10635150118469 CrossRefPubMedGoogle Scholar
  68. Ramstein G, Fluteau F, Besse J, Joussaume S (1997) Effect of orogeny, plate motion and land-sea distribution of Eurasian climate change of the past 30 million years. Nature 386(6627):788–795.  https://doi.org/10.1038/386788a0 CrossRefGoogle Scholar
  69. Romero-Severson J, Aldrich P, Feng Y, Sun W, Michler C (2003) Chloroplast DNA variation of northern red oak (Quercus rubra L.) in Indiana. New Forest 26:43–49CrossRefGoogle Scholar
  70. Sauquet H, Ho SY, Gandolfo MA, Jordan GJ, Wilf P, Cantrill DJ, Bayly MJ, Bromham L, Brown GK, Carpenter RJ, Lee DM, Murphy DJ, Sniderman JM, Udovicic F (2012) Testing the impact of calibration on molecular divergence times using a fossil-rich group: the case of Nothofagus (Fagales). Syst Biol 61(2):289–313.  https://doi.org/10.1093/sysbio/syr116 CrossRefPubMedGoogle Scholar
  71. Schwarz O (1936-1939) Monographic der Eichen Europas und des Mittelmeergebietes. Berlin-Dahlem, Feddes Repertorium regni vegetabilis Press, SonderbeiheftGoogle Scholar
  72. Shatilova I, Mchedlishvili N, Rukhadze L, Kvavadze E (2011) The history of the flora and vegetation of Georgia (South Caucasus). Georgian National Museum, Institute of Paleobiology, TbilisiGoogle Scholar
  73. Simeone MC, Piredda R, Papini A, Vessella F, Schirone B (2013) Application of plastid and nuclear markers to DNA barcoding of Euro-Mediterranean oaks (Quercus, Fagaceae): problems, prospects and phylogeographic implications. Bot J Linn Soc 172(4):478–499CrossRefGoogle Scholar
  74. Simeone MC, Guido WG, Papini A, Vessela F, Cardoni S, Tordoni E, Piredda R, Franc A, Denk T (2016) Plastome data reveal multiple geographic origins of Quercus Group Ilex. Peer J 4:e1897.  https://doi.org/10.7717/peerj.1897 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research. Freeman, New YorkGoogle Scholar
  76. Song SY, Krajewska K, Wang YF (2000) The first occurrence of the Quercus section Cerris Spach fruits in the Miocene of China. Acta Paleobotanica 40(2):153–163Google Scholar
  77. Stachurska-Swakoń A, Cieślak E, Ronikier M (2012) Phylogeography of subalpine tall-herb species in Central Europe: the case of Cicerbita alpina. Preslia 84(1):121–140Google Scholar
  78. Swofford DL (2003) PAUP: phylogenetic analysis using parsimony (and other methods). Version 4. Sinauer Associates Press, Sounderland, pp 5–134Google Scholar
  79. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123(3):585–595PubMedPubMedCentralGoogle Scholar
  80. Takhtajan AL (1978) The floristic regions of the world (Floristicheskie oblasti Zemli). Publisher House “Nauka”, Russia (in Russian)Google Scholar
  81. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30(12):2725–2729.  https://doi.org/10.1093/molbev/mst197 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Tarkhnishvili D (2014) Historical biogeography of the Caucasus. Nova Science, New YorkGoogle Scholar
  83. Tarkhnishvili D, Thorpe RS, Arntzen JW (2008) Pre-Pleistocene refugia and differentiation between populations of the Caucasian salamander (Mertensiella caucasica). Mol Phylogenet Evol 14:414–422CrossRefGoogle Scholar
  84. Tarkhnishvili D, Gavashelishvili A, Mumladze L (2012) Paleoclimatic models help to understand current distribution of Caucasian forest species. Biol J Linn Soc 105(1):231–248.  https://doi.org/10.1111/j.1095-8312.2011.01788.x CrossRefGoogle Scholar
  85. Tiffney BH, Manchester SR (2001) The use of geological and paleontological evidence in evaluating plant phylogeographic hypotheses in the Northern Hemisphere Tertiary. Int J Plant Sci 162(S6):S3–S16.  https://doi.org/10.1086/323880 CrossRefGoogle Scholar
  86. Tyler T (2002) Geographical distribution of allozyme variation in relation to postglacial history of Carex digitata, widespread European woodland sedge. J Biogeogr 29(7):919–930.  https://doi.org/10.1046/j.1365-2699.2002.00698.x CrossRefGoogle Scholar
  87. Van Valen L (1976) Ecological species, multispecies, and oaks. Taxon 25(2/3):233–239.  https://doi.org/10.2307/1219444 CrossRefGoogle Scholar
  88. Velitzelos D, Bouchal JM, Denk T (2014) Review of the Cenozoic floras and vegetation of Greece. Rev Palaeobot Palynol 204:56–117.  https://doi.org/10.1016/j.revpalbo.2014.02.006 CrossRefGoogle Scholar
  89. Vitelli M, Vessella F, Cardoni S, Pollegioni P, Denk T, Grimm GW, Simeone MC (2017) Phylogeographic structuring of plastome diversity in Mediterranean oaks (Quercus group ilex, Fagaceae). Tree Genet Genomes 13(1):3.  https://doi.org/10.1007/s11295-016-1086-8 CrossRefGoogle Scholar
  90. Willis KJ, Rudner E, Sumegi P (2000) The full-glacial forests of Central and Southeastern Europe. Quat Res 52(2):203–213.  https://doi.org/10.1006/qres.1999.2119 CrossRefGoogle Scholar
  91. Xu J, Deng M, Jiang XL (2015) Phylogeography of Quercus glauca (Fagaceae), a dominant tree of East Asian subtropical evergreen forests, based on three chloroplast DNA interspace sequences. Tree Genet Genomes 11(1):805.  https://doi.org/10.1007/s11295-014-0805-2 CrossRefGoogle Scholar
  92. Zachos JC, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends in rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693CrossRefPubMedGoogle Scholar
  93. Zazanashvili N, Gagnidze R, Nakhutsrishvili G (2010) Main types of vegetation zonation of the mountains of the Caucasus. Acta Phytogeographica Suec 85:7–16Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Alpine Ecosystems Research Program, Institute of Ecology, School of Life Sciences and EngineeringIlia State UniversityTbilisiGeorgia
  2. 2.Department of Agriculture and Forestry Sciences (DAFNE)Università degli Studi della TusciaViterboItaly

Personalised recommendations