Tree Genetics & Genomes

, 14:16 | Cite as

Genetics of resistance in apple against Venturia inaequalis (Wint.) Cke

  • Yash P. Khajuria
  • Sanjana Kaul
  • Aijaz A. Wani
  • Manoj K. Dhar
Part of the following topical collections:
  1. Disease Resistance


Apple (Malus × domestica) is the third important fruit in terms of production and consumption worldwide. Apple scab caused by Venturia inaequalis is the most devastating disease of apple. In the apple-growing regions, many fungicides are sprayed to control the disease leading to increase in the production cost. Development of scab-resistant cultivars is the long-lasting solution to control the disease. In apples, more than 20 major scab resistance genes have been identified in various cultivars and few wild relatives. Of all these genes, Rvi6 derived from Malus floribunda has been most extensively used in different breeding programs. Gene for gene interactions of these resistance genes with the avirulence genes from V. inaequalis have been understood in many cases. QTL-based polygenic resistance has also been characterized in apple. Nucleotide Binding Site Leucine-Rich Repeats (NBS-LRR) have been identified from the apple genome and many of them have been characterized from the scab resistance region. Molecular markers associated with most of the major scab resistance genes have been identified and their position has been mapped on different linkage groups. Marker-assisted selection (MAS) can be helpful in speeding up and accurately identifying the scab-resistant parents and progeny. Pyramiding of several major resistance genes can be undertaken for more durable resistance against apple scab. The present paper reviews the Malus-Venturia pathosystem, current status of knowledge about scab resistance genes, and their application in breeding against apple scab.


Malus domestica Venturia inaequalis Race Apple scab Avirulence Disease resistance genes MAS QTL 



Authors are thankful to DST-SERB and DBT for financial assistance. Thanks are due to Coordinator, Bioinformatics Centre, University of Jammu for providing the necessary facilities. We are highly grateful to anonymous reviewers for critical and detailed comments, which helped us to improve the manuscript.

Compliance with ethical standards

The submission complies with the ethical standards.

Conflict of interest

The authors declare that they have no conflict of interest.

Data archiving statement

The review includes compiled information and has not generated any data which could be submitted to a database.

Supplementary material

11295_2018_1226_MOESM1_ESM.docx (22 kb)
ESM 1 (DOCX 21 kb)


  1. Andolfo G, Sanseverino W, Rombauts S, Van de Peer Y, Bradeen JM, Carputo D, Frusciante L, Ercolano MR (2013) Overview of tomato (Solanum lycopersicum) candidate pathogen recognition genes reveals important Solanum R locus dynamics. New Phytol 197:223–237PubMedCrossRefGoogle Scholar
  2. Andolfo G, Iovieno P, Frusciante L, Ercolano MR (2016) Genome-editing technologies for enhancing plant disease resistance. Front Plant Sci 7:1813PubMedPubMedCentralCrossRefGoogle Scholar
  3. Arici SE, Kafkas E, Kaymak S, Koc NK (2014) Phenolic compounds of apple cultivars resistant or susceptible to Venturia inaequalis. Pharm Biol 52:904–908PubMedCrossRefGoogle Scholar
  4. Arya P, Kumar G, Acharya V, Singh AK (2014) Genome-wide identification and expression analysis of NBS-encoding genes in Malus x domestica and expansion of NBS genes family in Rosaceae. PLoS One 9:e107987PubMedPubMedCentralCrossRefGoogle Scholar
  5. Baldi P, Patocchi A, Zini E, Toller C, Velasco R, Komjanc M (2004) Cloning and linkage mapping of resistance gene homologues in apple. Theor Appl Genet 109:231–239PubMedCrossRefGoogle Scholar
  6. Bandara NL, Cova V, Tartarini S, Gessler C, Patocchi A, Cestaro A, Troggio M, Velasco R, Komjanc M (2015) Isolation of Rvi5 (vm) locus from Malus × domestica ‘Murray’. Acta Hortic 1100:21–24CrossRefGoogle Scholar
  7. Bartoli C, Roux F (2017) Genome-wide association studies in plant pathosystems: toward an ecological genomics approach. Front Plant Sci 8:763PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bassett CL, Baldo AM, Moore JT, Jenkins RM, Soffe DS, Wisniewski ME, Norelli JL, Farrell RE Jr (2014) Genes responding to water deficit in apple (Malus × domestica Borkh.) roots. BMC Plant Biol 14:182PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bassi FM, Bentley AR, Charmet G, Ortiz R, Crossa J (2016) Breeding schemes for the implementation of genomic selection in wheat (Triticum spp.) Plant Sci 242:23–36PubMedCrossRefGoogle Scholar
  10. Bastiaanse H, Muhovski Y, Parisi O, Paris R, Mingeot D, Lateur M (2014) Gene expression profiling by cDNA-AFLP reveals potential candidate genes for partial resistance of ‘Président Roulin’ against Venturia inaequalis. BMC Genomics 15:1043PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bastiaanse H, Muhovski Y, Mingeot D, Lateur M (2015) Candidate defense genes as predictors of partial resistance in ‘Président Roulin’ against apple scab caused by Venturia inaequalis. Tree Genet Genomes 11:125CrossRefGoogle Scholar
  12. Bastiaanse H, Bassett HC, Kirk C, Gardiner SE, Deng C, Groenworld R, Chagne D, Bus VG (2016) Scab resistance in ‘Geneva’ apple is conditioned by a resistance gene cluster with complex genetic control. Mol Plant Pathol l7:159–172CrossRefGoogle Scholar
  13. Baumgartner IO, Patocchi A, Frey JE, Peil A, Kellerhals M (2015) Breeding elite lines of apple carrying pyramided homozygous resistance genes against apple scab and resistance against powdery mildew and fire blight. Plant Mol Biol Rep 33:1573–1583CrossRefGoogle Scholar
  14. Belete T, Boyraz N (2017) Critical review on apple scab (Venturia inaequalis) biology, epidemiology, economic importance, management and defense response to causal agent. J Plant Physiol Pathol 5:2Google Scholar
  15. Belfanti E, Silfverberg-Dilworth E, Tartarini S, Patocchi A, Barbieri M, Zhu J, Vinatzer BA, Gianfranceschi L, Gessler C, Sansavini S (2004) The HcrVf2 gene from a wild apple confers scab resistance to a transgenic cultivated variety. Proc Natl Acad Sci U S A 101:886–890PubMedPubMedCentralCrossRefGoogle Scholar
  16. Benaouf G, Parisi L (2000) Genetics of host-pathogen relationships between Venturia inaequalis races 6 and 7 and Malus species. Phytopathology 90:236–242PubMedCrossRefGoogle Scholar
  17. Berkett L, Garcia M, Moran R, Darby H, Parsons R, Hayden J, Bradshaw T, Kingsley-Richards S, Cromwell M (2008) The OrganicA Project: organic disease management in orchards with “newer” cultivars. Int Organ Biol Integr Control Bull:436–440Google Scholar
  18. Bianco L, Cestaro A, Sargent DJ, Banchi E, Derdak S, Di Guardo M, Salvi S, Jansen J, Viola R, Gut I, Laurens F, Chagné D, Velasco R, van de Weg E, Troggio M (2014) Development and validation of a 20K single nucleotide polymorphism (SNP) whole genome genotyping array for apple (Malus × domestica Borkh). PLoS One 9(10):e110377PubMedPubMedCentralCrossRefGoogle Scholar
  19. Bianco L, Cestaro A, Linsmith G, Muranty H, Denancé C, Théron A, Poncet C, Micheletti D, Kerschbamer E, Di Pierro EA, Larger S, Pindo M, Van de Weg E, Davassi A, Laurens F, Velasco R, Durel CE, Troggio M (2016) Development and validation of the Axiom ® Apple 480K SNP genotyping array. Plant J 86:62–74PubMedCrossRefGoogle Scholar
  20. Biggs AR, Sundin GW, Rosenberger DA, Yoder KS, Sutton TB (2010) Relative susceptibility of selected apple cultivars to apple scab caused by Venturia inaequalis. PHP.
  21. Bolar JP, Norelli JL, Harman GE, Brown SK, Aldwinckle HS (2001) Synergistic activity of endochitinase and exochitinase from Trichoderma atroviride (T. harzianum) against thee pathogenic fungus (Venturia inaequalis) in transgenic apple plants. Transgenic Res 10:533–543PubMedCrossRefGoogle Scholar
  22. Borejsza-Wysocka E, Norelli J, Aldwinckle H, Malnoy M (2010) Stable expression and phenotypic impact of attacin E transgene in orchard grown apple trees over a 12 year period. BMC Biotechnol 10:41PubMedPubMedCentralCrossRefGoogle Scholar
  23. Bourget R, Chaumont L, Durel CE, Sapoukhina N (2015) Sustainable deployment of QTLs conferring quantitative resistance to crops: first lessons from a stochastic model. New Phytol 206:1163–1171PubMedCrossRefGoogle Scholar
  24. Bowen JK, Mesarich CH, Bus VG, Beresford RM, Plummer KM, Templeton MD (2011) Venturia inaequalis: the causal agent of apple scab. Mol Plant Pathol 12:105–122PubMedCrossRefGoogle Scholar
  25. Broggini GAL, Bus VGM, Parravicini G, Kumar S, Groenwold R, Gessler C (2011) Mapping of 14 avirulence genes in an EU-B04 × 1639 progeny of Venturia inaequalis. Fungal Genet Biol 48:166–176PubMedCrossRefGoogle Scholar
  26. Brown S (2012) Apple. In: Fruit breeding, Badenes ML, Byrne DH (eds) Handbook of plant breeding, pp 329–367Google Scholar
  27. Bus VGM, Rikkerink EHA, van de Weg WE, Rusholme RL, Gardiner SE, Bassett HCM, Kodde LP, Parisi L, Laurens FND, Meulenbroek EJ, Plummer KM (2005a) The Vh2 and Vh4 scab resistance genes in two differential hosts derived from Russian apple R 12740-7A map to the same linkage group of apple. Mol Breed 15:103–116CrossRefGoogle Scholar
  28. Bus VGM, Rikkerink EHA, van de Weg WE, Rusholme RL, Rikkerink E, Gardiner S (2005b) The Vh8 locus of a new gene for gene interaction between Venturia inaequalis and the wild apple Malus sieversii is closely linked to the Vh2 locus in Malus pumila R12740-7A. New Phytol 166:1035–1049PubMedCrossRefGoogle Scholar
  29. Bus VGM, Rikkerink E, Aldwinckle HS, Caffier V, Durel CE, Gardiner S, Gessler C, Groenwold R, Laurens F, LeCam B, Luby J, Meulenbroek B, Kellerhals M, Parisi L, Patocchi A, Plummer K, Schouten HJ, Tartarini S, van de Weg WE (2009) A proposal for the nomenclature of Venturia inaequalis races. Acta Hortic 814:739–746CrossRefGoogle Scholar
  30. Bus VGM, Basset HCN, Bowatle D, Chagné D, Ranatunga CA, Ulluwshewa D, Wiedow C, Gardiner SE (2010) Genome mapping of an apple scab, a powdery mildew and a woolly apple aphid resistance gene from open-pollinated mildew immune selection. Tree Genet Genomes 6:477–487CrossRefGoogle Scholar
  31. Bus VGM, Rikkerink EH, Caffier V, Durel CE, Plummer KM (2011) Revision of the nomenclature of the differential host-pathogen interactions of Venturia inaequalis and Malus. Annu Rev Phytopathol 49:391–413PubMedCrossRefGoogle Scholar
  32. Caffier V, Lasserre-Zuber P, Giraud M, Lascostes M, Stievenard R, Lemarquand A, van de Weg E, Expert P, Denance C, Didelot F, Le Cam B, Durel CE (2014) Erosion of quantitative host resistance in the apple × Venturia inaequalis pathosystem. Infect Genet Evol 27:481–489PubMedCrossRefGoogle Scholar
  33. Caffier V, Patocchi A, Expert P, Bellanger MN, Durel CE, Hilber-Bodmer M, Broggini GAL, Groenwold R, Bus VGM (2015) Virulence characterization of Venturia inaequalis reference isolates on the differential set of Malus hosts. Plant Dis 99:370–375Google Scholar
  34. Calenge F, Faure A, Goerre M, Gebhardt C, Van de Weg WE, Parisi L, Durel CE (2004) Quantitative trait loci (QTL) analysis reveals both broad-spectrum and isolate-specific QTL for scab resistance in an apple progeny challenged with eight isolates of Venturia inaequalis. Phytopathology 94:370–379PubMedCrossRefGoogle Scholar
  35. Cao H, Glazebrook J, Clarke JD, Volko S, Dong X (1997) The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88:57–63PubMedCrossRefGoogle Scholar
  36. Cardi T (2016) Cisgenesis and genome editing: combining concepts and efforts for a smarter use of genetic resources in crop breeding. Plant Breed 135:139–147CrossRefGoogle Scholar
  37. Cheng FS, Weeden NF, Brown SK, Aldwinckle HS, Gardiner SE, Bus VGM (1998) Development of a DNA marker for Vm, a gene conferring resistance to apple scab. Genome 41:208–214CrossRefGoogle Scholar
  38. Chevalier M, Lespinasse Y, Renaudin S (1991) A microscopic study of the different classes of symptoms coded by the Vf gene in apple for resistance to scab (Venturia inaequalis). Plant Pathol 40:249–256CrossRefGoogle Scholar
  39. Chizzali C, Gusberti M, Schouten HJ, Gessler C, Broggini GA (2016) Cisgenic Rvi6 scab-resistant apple lines show no differences in Rvi6 transcription when compared with conventionally bred cultivars. Planta 243:635–644PubMedCrossRefGoogle Scholar
  40. Clark MD (2014) Characterizing the host response and genetic control in ‘Honeycrisp’ to apple scab (Venturia inaequalis). Retrieved from the University of Minnesota Digital Conservancy.
  41. Clark M, Bradeen J, Luby J, Bedford D (2012). Apple cultivar ‘Honeycrisp’ exhibits genetic resistance to apple scab. ASHS Annual Conference Poster #373Google Scholar
  42. Clark MD, Luby JJ, Bradeen JM, Bus VGM (2014) Identification of candidate genes at Rvi19 and Rvi20, two apple scab resistance loci in the ‘Honeycrisp’ apple (Malus × domestica). In Plant and Animal Genome XXII Conference. Plant and Animal GenomeGoogle Scholar
  43. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823PubMedPubMedCentralCrossRefGoogle Scholar
  44. Cornille A, Gladieux P, Smulders MJ, Roldán-Ruiz I, Laurens F, Le Cam B, Nersesyan A, Clavel J, Olonova M, Feugey L, Gabrielyan I, Zhang XG, Tenaillon MI, Giraud T (2012) New insight into the history of domesticated apple: secondary contribution of the European wild apple to the genome of cultivated varieties. PLoS Genet 8(5):e1002703PubMedPubMedCentralCrossRefGoogle Scholar
  45. Cova V, Lasserre-Zuber P, Piazza S, Cestaro A, Velasco R, Durel CE, Malnoy M (2015a) High-resolution genetic and physical map of the Rvi1 (Vg) apple scab resistance locus. Mol Breed 35:16CrossRefGoogle Scholar
  46. Cova V, Bandara NL, Liang W, Tartarini S, Patocchi A, Troggio M, Velasco R, Komjanc M (2015b) Fine mapping of the Rvi5 (Vm) apple scab resistance locus in the ‘Murray’ apple genotype. Mol Breed 35:200CrossRefGoogle Scholar
  47. Crandall CS (1926) Apple breeding at the University of Illinois. Illinois Agric Exp Stn bull 275:341–600Google Scholar
  48. Crosby JA, Janick J, Pecknold PC, Korban SS, O'Connon PA, Ries SM, Goffreda J, Voordeckers A (1992) Breeding apples for scab resistance: 1945-1990. Fruit Var J 46:145–166Google Scholar
  49. Cusin R, Revers LF, Maraschin FDS (2017) New biotechnological tools to accelerate scab-resistance trait transfer to apple. Genet Mol Biol 40:305–311PubMedPubMedCentralCrossRefGoogle Scholar
  50. Daccord N, Celton JM, Linsmith G, Becker C, Choisne N, Schijlen E, van de Geest H, Bianco L, Micheletti D, Velasco R, Di Pierro EA, Gouzy J, Rees DJG, Guérif P, Muranty H, Durel CE, Laurens F, Lespinasse Y, Gaillard S, Aubourg S, Quesneville H, Weigel D, van de Weg E, Troggio M, Bucher E (2017) High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nat Genet 49:1099–1106PubMedCrossRefGoogle Scholar
  51. Dai GH, Nicole M, Andary C, Martinez C, Bresson E, Boher B, Daniel JF, Geiger JP (1996) Flavonoids accumulate in cell walls, middle lamellae and calloserich papillae during an incompatible interaction between Xanthomonas campestris pv. malvacearum and cotton. Physiol Mol Plant Pathol 49:285–306CrossRefGoogle Scholar
  52. DARE project (2002) Reducing chemical input in apple production in response to consumer and grower’s environmental concerns by increasing the durability of natural disease resistance FAIR973898Google Scholar
  53. Dayton DF, Williams EB (1968) Independent genes in Malus for resistance to Venturia inaequalis. Proc Am Soc Hortic Sci 92:89–94Google Scholar
  54. Dayton DF, Williams EB (1970) Additional allelic genes in Malus for scab resistance of two reaction types. J Am Soc Hortic Sci 95:735–736Google Scholar
  55. Degenhardt J, Al-Masri AN, Urkcuoglu SK, Szankowski I, Gau AE (2005) Characterization by suppression subtractive hybridization of transcripts that are differentially expressed in leaves of apple scab-resistant and susceptible cultivars of Malus domestica. Mol Gen Genomics 273:326–335CrossRefGoogle Scholar
  56. Deng CH, Plummer KM, Jones DAB, Mesarich CH, Shiller J, Taranto AP, Robinson AJ, Kastner P, Hall NE, Templeton MD, Bowen JK (2017) Comparative analysis of the predicted secretomes of Rosaceae scab pathogens Venturia inaequalis and V. pirina reveals expanded effector families and putative determinants of host range. BMC Genomics 18:339PubMedPubMedCentralCrossRefGoogle Scholar
  57. Dickman MB, Figueiredo PD (2011) Comparative pathobiology of fungal pathogens of plants and animals. PLoS Pathog (12):e1002324Google Scholar
  58. Didelot F, Caffier V, Orain G, Lemarquand A, Parisi L (2016) Sustainable management of scab control through the integration of apple resistant cultivars in a low-fungicide input system. Agric Ecosyst Environ 217:41–48CrossRefGoogle Scholar
  59. Dong S, Stam R, Cano LM, Song J, Sklenar J, Yoshida K, Bozkurt TO, Oliva R, Liu Z, Tian M, Win J, Banfield MJ, Jones AM, van der Hoorn RA, Kamoun S (2014) Effector specialization in a lineage of the Irish potato famine pathogen. Science 343:552–555PubMedCrossRefGoogle Scholar
  60. Durel CE, van de Weg E, Venisse JS, Parisi L (2000) Localisation of a major gene for scab resistance on the European genetic map of the Prima × Fiesta cross. OILB/WPRS Bull 23:255–248Google Scholar
  61. Durel CE, Parisi L, Laurens F, Van de Weg WE, Liebhard R, Jourjon MF (2003) Genetic dissection of partial resistance to race 6 of Venturia inaequalis in apple. Genome 46:224–234PubMedCrossRefGoogle Scholar
  62. Durel CE, Calenge F, Parisi L, van de Weg WE, Kodde LP, Liebhard R, Gessler C, Thiermann M, Dunemann F, Gennari F, Tartarini S (2004) An overview of the position and robustness of scab resistance QTLs and major genes by aligning genetic maps of five apple progenies. Acta Hortic 663:135–140CrossRefGoogle Scholar
  63. Ebrahimi L, Fotouhifar KB, Javan Nikkhah M, Naghavi MR, Baisakh N (2016) Population genetic structure of apple scab (Venturia inaequalis (Cooke) G. Winter) in Iran. PLoS One 11(11):e0167415PubMedPubMedCentralCrossRefGoogle Scholar
  64. Erdin N, Tartarini S, Broggini GA, Gennari F, Sansavini S, Gessler C, Patocchi A (2006) Mapping of the apple scab-resistance gene Vb. Genome 49:1238–1245PubMedCrossRefGoogle Scholar
  65. FAOSTAT (2014) FAO statistics division.
  66. Flachowsky H, Szankowski I, Fischer TC, Richter K, Peil A, Hofer M, Dorschel C, Schmoock S, Gau AE, Halbwirth H, Hanke MV (2010) Transgenic apple plants overexpressing the Lc gene of maize show an altered growth habit and increased resistance to apple scab and fire blight. Planta 231:623–635PubMedCrossRefGoogle Scholar
  67. Flor HH (1971) Current status of the gene for gene concept. Annu Rev Phytopathol 9:278–296CrossRefGoogle Scholar
  68. Galli P, Broggini GAL, Kellerhals M, Gessler C, Potachi A (2010a) High resolution genetic map of the Rvi15 (Vr2) apple scab resistance locus. Mol Breed 26:561–572CrossRefGoogle Scholar
  69. Galli P, Potacchi A, Broggini GAL, Gessler C, Potachi A (2010b) The Rvi15 (Vr2) scab resistance locus contains three TIR NBS LRR genes. Mol Plant-Microbe Interact 23:608–617PubMedCrossRefGoogle Scholar
  70. Galli P, Broggini GAL, Gessler C, Patocchi A (2010c) Phenotypic characterization of the rvi15 (vr2) apple scab resistance. JPP 92:219–226Google Scholar
  71. Gau AE, Koutb M, Piotrowski M, Kloppstech K (2004) Accumulation of pathogenesis-related proteins in the apoplast of a susceptible cultivar of apple (Malus domestica cv. Elstar) after infection by Venturia inaequalis and constitutive expression of PR genes in the resistant cultivar Remo. Eur J Plant Pathol 7:703–711CrossRefGoogle Scholar
  72. Gessler C, Pertot I (2012) Vf scab resistance of Malus. Trees 26:95–108CrossRefGoogle Scholar
  73. Gessler C, Patocchi A, Sansavini S, Tartarini S, Gianfranceschi L (2006) Venturia inaequalis resistance in apple. Crit Rev Plant Sci 25:473–503CrossRefGoogle Scholar
  74. Gianfranceschi L, Soglio V (2004) The European Project HIDRAS: innovative multidisciplinary approaches to breeding high quality disease resistant apples. Acta Hortic 663:327–330CrossRefGoogle Scholar
  75. Gianfranceschi L, Koller B, Seglias N, Kellerhals M, Gessler C (1996) Molecular selection in apple for resistance to scab caused by Venturia inaequalis. Theor Appl Genet 93:199–204PubMedCrossRefGoogle Scholar
  76. Gladieux P, Zhang XG, Afoufa-Bastien D, Valdebenito Sanhueza RM, Sbaghi M, Le Cam B (2008) On the origin and spread of the scab disease of apple: out of Central Asia. PLoS One 3(1):e1455PubMedPubMedCentralCrossRefGoogle Scholar
  77. Gladieux P, Zhang XG, Roldan-Ruiz I, Caffier V, Leroy T, Devaux M, Van Glabeke S, Coart E, Le Cam B (2010) Evolution of the population structure of Venturia inaequalis, the apple scab fungus, associated with the domestication of its host. Mol Ecol 19:658–674PubMedCrossRefGoogle Scholar
  78. Gladieux P, Guérin F, Giraud T, Caffier V, Lemaire C, Parisi L, Didelot F, Le Cam B (2011) Emergence of novel fungal pathogens by ecological speciation: importance of the reduced viability of immigrants. Mol Ecol 20:4521–4532PubMedCrossRefGoogle Scholar
  79. Guerin F, Le Cam B (2004) Breakdown of the scab resistance gene Vf in apple leads to a founder effect in populations of the fungal pathogen Venturia inaequalis. Phytopathology 94:364–369PubMedCrossRefGoogle Scholar
  80. Guerin F, Franck P, Loiseau A, Devaux M, Le Cam B (2004) Isolation of 21 new polymorphic microsatellite loci in the phytopathogenic fungus Venturia inaequalis. Mol Ecol Notes 4:268–270CrossRefGoogle Scholar
  81. Guerin F, Gladieux P, Le Cam B (2007) Origin and colonization history of newly virulent strains of the phytopathogenic fungus Venturia inaequalis. Fungal Genet Biol 44:284–292.Google Scholar
  82. Gusberti M, Gessler C, Broggini GAL (2013) RNA-Seq analysis reveals candidate genes for ontogenic resistance in Malus-Venturia pathosystem. PLoS One 8(11):e78457PubMedPubMedCentralCrossRefGoogle Scholar
  83. Gygax M, Gianfranceschi L, Liebhard R, Kellerhals M, Gessler C, Patocchi A (2004) Molecular marker linked to the apple scab resistance gene Vbj derived from Malus baccata Jackii. Theor Appl Genet 109:1702–1719PubMedCrossRefGoogle Scholar
  84. Hanke MV, Flachowsky H, Wenzel S, Barthel K, Peil A (2014) The fast track breeding system in apple based on transgenic early flowering plants and marker assisted selection: an update. In: Proceedings of the 1st International Rapid Cycle Crop Breeding Conference. Leesburg, 7–9Google Scholar
  85. Harris SA, Robinson JP, Juniper BE (2002) Genetic clues to the origin of the apple. Trends Genet 18:426–430PubMedCrossRefGoogle Scholar
  86. Hemmat M, Weeden NF, Aldwinckle HS, Brown SK (1998) Molecular markers for the scab resistance (Vf) region in apple. J Am Soc Hortic Sci 123:992–996Google Scholar
  87. Hemmat M, Brown SK, Weeden NF (2002) Tagging and mapping scab resistance genes from R12740-7A apple. J Am Soc Hortic Sci 127:365–370Google Scholar
  88. Hemmat M, Brown SK, Aldwinckle HS, Weeden NF (2003) Identification and mapping of markers for resistance to apple scab from “Antonovka” and “Hansen’s baccata #2”. Acta Hortic 622:153–161CrossRefGoogle Scholar
  89. Hough LF (1944) A survey of scab resistance of foliage on seedling in selected apple progenies. Proc Am Soc Hortic Sci 44:260–272Google Scholar
  90. Hrazdina G, Borejsza-Wysocki W (2003) Response of scab-susceptible (McIntosh) and scab-resistant (Liberty) apple tissues to treatment with yeast extract and Venturia inaequalis. Phytochemistry 64:485–492PubMedCrossRefGoogle Scholar
  91. Hrazdina G, Borejsza-Wysocki W, Lester C (1997) Phytoalexin production in an apple cultivar resistant to Venturia inaequalis. Phytopathology 87:868–876PubMedCrossRefGoogle Scholar
  92. Hunter P (2014) “Genetically Modified Lite” placates public but not activists: new technologies to manipulate plant genomes could help to overcome public concerns about GM crops. EMBO Rep 15:138–141PubMedPubMedCentralGoogle Scholar
  93. Jacobsen E, Schouten HJ (2008) Cisgenesis, a new tool for traditional plant breeding, should be exempted from the regulation on genetically modified organisms in a step by step approach. Potato Res 51:75–88CrossRefGoogle Scholar
  94. Janick J (2006) The PRI apple fruit breeding program. Hortscience 41:8–10Google Scholar
  95. Jansch M, Paris R, Amoako-Andoh F, Keulemans W, Davey MW, Pagliarani G, Tartarini S, Patocchi A (2014) A phenotypic, molecular and biochemical characterization of the first cisgenic scab-resistant apple variety ‘Gala’. Plant Mol Biol Rep 32:679–690CrossRefGoogle Scholar
  96. Jansch M, Broggini GA, Weger J, Bus VG, Gardiner SE, Bassett H, Patocchi A (2015) Identification of SNPs linked to eight apple disease resistance loci. Mol Breed 35:45CrossRefGoogle Scholar
  97. Jefferson RM (1970) History, progeny, and location of crabapples of documented authentic origin. US Department of Agriculture, Washington, DCCrossRefGoogle Scholar
  98. Jha G, Thakur K, Thakur P (2009) The Venturia apple pathosystem: pathogenicity mechanisms and plant defense responses. J Biomed Biotech 10. Article ID 680160Google Scholar
  99. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821PubMedCrossRefGoogle Scholar
  100. Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329PubMedCrossRefGoogle Scholar
  101. Joshi SG (2010) Towards durable resistance to apple scab using cisgenes. PhD thesis, Wagenigen University NLGoogle Scholar
  102. Joshi SG, Schaart JG, Groenwold R, Jacobsen E, Schouten HJ, Krens FA (2011) Functional analysis and expression profiling of HcrVf1 and HcrVf2 for development of scab resistant cisgenic and intragenic apples. Plant Mol Biol 75:579–591PubMedPubMedCentralCrossRefGoogle Scholar
  103. Khajuria YP, Kaul S, Dhar MK (2012) Molecular characterization of Venturia inaequalis causing apple scab in Kashmir. Sci Rep 1:339.
  104. Koller W, Parker DM, Becker CM (1991) Role of cutinase in the penetration of apple leaves by Venturia inaequalis. Phytopathology 81:1375–1379CrossRefGoogle Scholar
  105. Koller B, Gianfranceschi L, Seglias N, Mcdermott J, Gessler C (1994) DNA markers linked to Malus floribunda 821 scab resistance. Plant Mol Biol 26:597–602PubMedCrossRefGoogle Scholar
  106. Korban SS, Tartarini S (2009) Apple structural genomics. In: Folta KM, Gardiner S (eds) Genetics and genomics of Rosaceae, vol. 6. Springer, pp. 85–119Google Scholar
  107. Krens FA, Schaart JG, van der Burgh AM, Tinnenbroek-Capel IE, Groenwold R, Kodde LP, Broggini GA, Gessler C, Schouten HJ (2015) Cisgenic apple trees; development, characterization, and performance. Front Plant Sci 6:286PubMedPubMedCentralCrossRefGoogle Scholar
  108. Kumar V, Wijmenga C, Withoff S (2012) From genome-wide association studies to disease mechanisms: celiac disease as a model for autoimmune diseases. Semin Immunopathol 34:567–580PubMedPubMedCentralCrossRefGoogle Scholar
  109. Kumar V, Mack DR, Marcil V, Israel D, Krupoves A, Costea I, Lambrette P, Grimard G, Dong J, Seidman EG, Amre DK, Levy E (2013) Genome-wide association study signal at the 12q12 locus for Crohn’s disease may represent associations with the MUC19 gene. Inflamm Bowel Dis 19:1254–1259PubMedCrossRefGoogle Scholar
  110. Laurens F (1999) Review of the current apple breeding programmes in the world. Objectives for scion cultivar improvement. Acta Hort 484:163–170Google Scholar
  111. Laurens F, Lespinasse Y (1996) Stratégies génétiques pour créer des variétés de pommier (Malus × domestica) résistant durablement à la tavelure (Venturia inaequalis). Dixième Colloque sur les Recherches Fruitières, Maladies des ArbresFruitiers et Résistance Variétale. Versailles, France: INRA, CTIFL, 55–66Google Scholar
  112. Laurens F, Durel CE, Lascostes M (2004) Molecular characterization of French local apple cultivars using SSRs. Acta Hortic 663:639–642CrossRefGoogle Scholar
  113. Le Cam B, Parisi L, Arene L (2002) Evidence of two formae speciales in Venturia inaequalis. Responsible for Apple and Pyracantha Scab. Phytopathology 92:314–320PubMedCrossRefGoogle Scholar
  114. Le Van A, Gladieux P, Lemaire C, Cornille A, Giraud T, Durel CE, Caffier V, Le Cam B (2012) Evolution of pathogenicity traits in the apple scab fungal pathogen in response to the domestication of its host. Evol Appl 5:694–704PubMedPubMedCentralCrossRefGoogle Scholar
  115. Leforestier D, Ravon E, Muranty H, Cornille A, Lemaire C, Giraud T, Durel CE, Branca A (2015) Genomic basis of the differences between cider and dessert apple varieties. Evol Appl 8:650–661PubMedPubMedCentralCrossRefGoogle Scholar
  116. Lemaire C, De Gracia M, Leroy T, Michalecka M, Lindhard-Pedersen H, Guerin F, Gladieux P, Le Cam B (2016) Emergence of new virulent populations of apple scab from nonagricultural disease reservoirs. New Phytol 209:1220–1229PubMedCrossRefGoogle Scholar
  117. Leroy T, Lemaire C, Dunemann F, Le Cam B (2013) The genetic structure of a Venturia inaequalis population in a heterogeneous host population composed of different Malus species. BMC Evol Biol 13:64PubMedPubMedCentralCrossRefGoogle Scholar
  118. Leroy T, Caffier V, Celton JM, Anger N, Durel CE, Lemaire C, Le Cam B (2016) When virulence originates from nonagricultural hosts: evolutionary and epidemiological consequences of introgressions following secondary contacts in Venturia inaequalis. New Phytol 210:1443–14352PubMedCrossRefGoogle Scholar
  119. Lespinasse Y, Parisi L, Pinet C, Laurens F, Durel CE (1999) Resistance du pommier `a la tavelure et a l’o¨ıdium. Phytoma 154:23–26Google Scholar
  120. Lespinasse Y, Durel CE, Parisi L, Laurens F, Chevalier M, Pinet C (2000) An European project: D.A.R.E-Durable Apple Resistance in Europe (FAIR 5 CT97-3898). Durable resistance of apple to scab and powdery mildew: one step more towards an environmental friendly orchard. IOBC/WPRS Bull 23:257–260Google Scholar
  121. Li B, Xu X (2002) Infection and development of apple scab (Venturia inaequalis) in old leaves. J Phytopathol 150:687–691CrossRefGoogle Scholar
  122. Liebhard R, Koller B, Patocchi A, Kellerhals M, Pfammatter W, Jermini M, Gessler C (2003) Mapping quantitative field resistance against apple scab in a ‘Fiesta’ x ‘Discovery’ progeny. Phytopathology 93:493–501PubMedCrossRefGoogle Scholar
  123. Liu W, Liu J, Ning Y, Ding B, Wang X, Wang Z, Wang GL (2013) Recent progress in understanding PAMP and effector triggered immunity against the rice blast fungus Magnaporthe oryzae. Mol Plant 6:605–620PubMedCrossRefGoogle Scholar
  124. Lucht JM (2015) Public acceptance of plant biotechnology and GM crops. Viruses 7:4254–4281PubMedPubMedCentralCrossRefGoogle Scholar
  125. Lusser M, Davies HV (2013) Comparative regulatory approaches for groups of new plant breeding techniques. New Biotechnol 30:437–446CrossRefGoogle Scholar
  126. MacHardy WE (1996) Pathogen development and host tissue reaction. Apple scab biology, epidemiology, and management. APS press, St. PaulGoogle Scholar
  127. Malnoy M, Jin Q, Borejsza-Wysocka EE, He SY, Aldwinckle HS (2007) Overexpression of the apple MpNPR1 gene confers increased disease resistance in Malus x domestica. Mol Plant-Microbe Interact 20:1568–1580PubMedCrossRefGoogle Scholar
  128. Malnoy M, Xu M, Borejsza-Wysocka E, Korban SS, Aldwinckle HS (2008) Two receptor-like genes, Vfa1 and Vfa2, confer resistance to the fungal pathogen Venturia inaequalis inciting apple scab disease. Mol Plant-Microbe Interact 21:448–458PubMedCrossRefGoogle Scholar
  129. Manganaris AG, Alston FH, Weeden NF, Aldwinckle HS, Gustafson HL, Brown SK (1994) Isozyme locus Pgm-1 is tightly linked to a gene (Vf) for scab resistance in apple. J Am Soc Hortic Sci 119:1286–1288Google Scholar
  130. Mansy S (2017) Occurrence of Venturia inaequalis races in Poland able to overcome specific scab resistance genes. Eur J Plant Pathol 147:313–323CrossRefGoogle Scholar
  131. Mayr U, Michalek S, Treutter D, Feucht W (1997) Phenolic compounds of apple and their relationship to scab resistance. J Phytopathol 145:69–75CrossRefGoogle Scholar
  132. Mazzotta S, Kemmerling B (2011) Pattern recognition in plant innate immunity. J Plant Pathol 93:7–17Google Scholar
  133. Michelmore RW, Meyers BC (1998) Clusters of resistance genes in plants evolve by divergent selection and a birth and death process. Genome Res 8:1113–1130PubMedCrossRefGoogle Scholar
  134. Nicholson RL, Hammerschmidt R (1992) Phenolic compounds and their role in disease resistance. Annu Rev Phytopathol 30:369–389CrossRefGoogle Scholar
  135. Nicholson RL, Kuc J, Williams EB (1972) Histochemical demonstration of transitory esterase activity in Venturia inaequalis. Phytopathology 62:1242–1247CrossRefGoogle Scholar
  136. Nishitani C, Hirai N, Komori S, Wada M, Okada K, Osakabe K, Yamamoto T, Osakabe Y (2016) Efficient genome editing in apple using a CRISPR/Cas9 system. Sci Rep 6:31481PubMedPubMedCentralCrossRefGoogle Scholar
  137. Orbach MJ, Farrall L, Sweigard JA, Chumley FG, Valent B (2000) A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta. Plant Cell 12:2019–2032PubMedPubMedCentralCrossRefGoogle Scholar
  138. Padmarasu S (2016) Genetic characterization of Rvi12 based scab resistance from Malus baccata “Hansens baccata # 2” (dissertation thesis) Alma Mater Studiorum Universita di bologna. Dottorato di ricerca in scienze tecnologie agarie ambientali e alimentary, 20 cicloGoogle Scholar
  139. Padmarasu S, Sargent DJ, Jaensch M, Kellerhals M, Tartarini S, Velasco R, Troggio M, Patocchi A (2014) Fine-mapping of the apple scab resistance locus Rvi12 (Vb) derived from ‘Hansen’s baccata #2. Mol Breed 34:2119–2129CrossRefGoogle Scholar
  140. Parisi L, Lespinasse Y, Guillaumes J, Cruger J (1993) A new race of Venturia inaequalis virulent to apples with resistance due to Vf gene. Phytopathology 83:533–537CrossRefGoogle Scholar
  141. Parisi L, Fouillet V, Schouten HJ, Groenwold R, Laurens F, Didelot F, Evans K, Fischer C, Gennari F, Kemp H, Lateur M, Patocchi A, Thissen J, Tsipouridis C (2004) Variability of the pathogenicity of Venturia inaequalis in Europe. Acta Hortic 663:107–114CrossRefGoogle Scholar
  142. Patocchi A (2000) Map based cloning of resistance gene homologues in the Vf refion of the apple (Malus sp.). a PhD dissertation submitted to the Swiss Federal Institute of Technology ZiikichGoogle Scholar
  143. Patocchi A, Gianfranceschi L, Gessler C (1999a) Towards the map-based cloning of Vf: fine and physical mapping of the Vf region. Theor Appl Genet 99:1012–1017CrossRefGoogle Scholar
  144. Patocchi A, Vinatzer BA, Gianfranceschi L, Tartarini S, Zhang HB, Sansavini S, Gessler C (1999b) Construction of a 550 kb BAC contig spanning the genomic region containing the apple scab resistance gene Vf. Mol Gen Genet 262:884–891PubMedCrossRefGoogle Scholar
  145. Patocchi A, Bigler B, Liebhard R, Koller B, Gessler C (2003) Mapping of Vr2, a third apple scab resistance gene of Russian seedling (R12740-7A). Plant & Animal Genomes XI Conference, Poster: P540Google Scholar
  146. Patocchi A, Bigler B, Koller B, Kellerhals M, Gessler C (2004) Vr2: a new apple scab resistance gene. Theor Appl Genet 109:1087–1092PubMedCrossRefGoogle Scholar
  147. Patocchi A, Walser M, Tartarini S, Broggini GAL, Gennari F, Sansavini S, Gessler C (2005) Identification by genome scanning approach (GSA) of a microsatellite tightly associated with the apple scab resistance gene Vm. Genome 48:630–636PubMedCrossRefGoogle Scholar
  148. Patocchi A, Frei A, Frey JE, Kellerhals M (2009) Towards improvement of marker assisted selection of apple scab resistant cultivars: Venturia inaequalis virulence surveys and standardization of molecular marker alleles associated with resistance genes. Mol Breed 24:337–347CrossRefGoogle Scholar
  149. Perazzolli M, Malacarne G, Baldo A, Righetti L, Bailey A, Fontana P, Velasco R, Malnoy M (2014) Characterization of resistance gene analogues (RGAs) in apple (Malus ×domestica Borkh.) and their evolutionary history of the Rosaceae family. PLoS One 9(2):e83844PubMedPubMedCentralCrossRefGoogle Scholar
  150. Phipps JB, Robertson KR, Rohrer JR, Smith PG (1991) Origins and evolution of subfam. Maloideae (Rosaceae). Syst Bot 16:303–332CrossRefGoogle Scholar
  151. Pilet-Nayel ML, Moury B, Caffier V, Montarry J, Kerlan MC, Fournet S, Durel CE, Delourme R (2017) Quantitative resistance to plant pathogens in pyramiding strategies for durable crop protection. Front Plant Sci.
  152. Quamme HA, Hampson CR, Hall JW, Sholberg PL, Bedford KE, Randall P (2003) Inheritance of apple scab resistance from polygenic sources based on greenhouse and field evaluation. Acta Hortic 622:317–321CrossRefGoogle Scholar
  153. Roberts AL, Crute IR (1994) A scab resistance from Malus floribunda 821 (Vf) is rendered ineffective by isolates of Venturia inaequal is from Malus floribunda. Nor J Agric Sci 17:403–406Google Scholar
  154. Robinson JP, Harris SA, Juniper BE (2001) Taxonomy of the genus Malus Mill. (Rosaceae) with emphasis on the cultivated apple, Malus domestica Borkh. Plant Syst Evol 226:35–58CrossRefGoogle Scholar
  155. Ruhmann S, Pfeiffer J, Brunner P, Szankowski I, Fischer TC, Forkmann G, Treutter D (2013) Induction of stilbene phytoalexins in grapevine (Vitis vinifera) and transgenic stilbene synthase-apple plants (Malus domestica) by a culture filtrate of Aureobasidium pullulans. Plant Physiol Biochem 72:62–71PubMedCrossRefGoogle Scholar
  156. Sapoukhina N, Durel CE, Le Cam B (2009) Spatial deployment of gene-for-gene resistance governs evolution and spread of pathogen populations. Theor Ecol 2:229–238CrossRefGoogle Scholar
  157. Schouten HJ, Brinkhuis J, van der Burgh AM, Schaart JG, Groenwold R, Broggini GAL, Gessler C (2014) Cloning and functional characterization of the Rvi15 (Vr2) gene for apple scab resistance. Tree Genet Genomes 10:251–260CrossRefGoogle Scholar
  158. Shiller J, Van de Wouw AP, Taranto AP, Bowen JK, Dubois D, Robinson A, Deng CH, Plummer KM (2015) A large family of AvrLm6-like genes in the apple and pear scab pathogens, Venturia inaequalis and Venturia pirina. Front Plant Sci 6:980PubMedPubMedCentralCrossRefGoogle Scholar
  159. Sierotzki H, Gessler C (1998) Genetic analysis of a cross of two Venturia inaequalis strains that differ in virulence. J Phytopathol 146:515–519CrossRefGoogle Scholar
  160. Silfverberg-Dilworth E, Besse S, Paris R, Belfanti E, Tartarini S, Sansavini S, Patocchi A, Gessler C (2005) Identification of functional apple scab resistance gene promoters. Theor Appl Genet 110:1119–1126PubMedCrossRefGoogle Scholar
  161. Soriano JM, Madduri M, Schaart JG, van der Burgh A, van Kaauwen MPW, Tomic L, Groenwold R, Velasco R, van de Weg E, Schouten HJ (2014) Fine mapping of the gene Rvi18 (V25) for broad-spectrum resistance to apple scab, and development of a linked SSR marker suitable for marker-assisted breeding. Mol Breed 34:2021–2032CrossRefGoogle Scholar
  162. Soufflet-Freslon V, Gianfranceschi L, Patocchi A, Durel CE (2008) Inheritance studies of apple scab resistance and identification of Rvi14, a new major gene that acts together with other broad-spectrum QTL. Genome 51:657–667PubMedCrossRefGoogle Scholar
  163. Soyer JL, El Ghalid M, Glaser N, Ollivier B, Linglin J, Grandaubert J, Balesdent MH, Connolly LR, Freitag M, Rouxel T, Fudal I (2014) Epigenetic control of effector gene expression in the plant pathogenic fungus Leptosphaeria maculans. PLoS Genet 10:e1004227PubMedPubMedCentralCrossRefGoogle Scholar
  164. Spindel J, Begum H, Akdemir D, Virk P, Collard B, Redona E, Atlin G, Jannink J, McCouch SR (2015) Genomic selection and association mapping in rice (Oryza sativa): effect of trait genetic architecture, training population, composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines. PLoS Genet 11(6):e1005350PubMedPubMedCentralCrossRefGoogle Scholar
  165. Szankowski I, Waidmann S, Degenhardt J, Patocchi A, Paris R, Silfverberg-Dilworth E, Broggini G, Gessler C (2009) Highly scab-resistant transgenic apple lines achieved by introgression of HcrVf2 controlled by different native promoter lengths. Tree Genet Genomes 5:349–358CrossRefGoogle Scholar
  166. Tartarini S (1996) RAPD markers linked to the Vf gene for scab resistance in apple. Appl Genet 92:803–910CrossRefGoogle Scholar
  167. Tartarini S, Gianfranceschi L, Sansavini S, Gessler C (1999) Development of reliable PCR markers for the selection of the Vf gene conferring scab resistance in apple. Plant Breed 118:183–186CrossRefGoogle Scholar
  168. Tartarini S, Sansavini S, Vinatzer B, Gennari F, Domizi C (2000) Efficiency of marker assisted selection (MAS) for the Vf scab resistance gene. Acta Horti (ISHS) 538:549–552CrossRefGoogle Scholar
  169. Tartarini S, Gennari F, Pratesi D, Palazetti C, Sansavini S et al (2004) Characterization and genetic mapping of a major scab resistance gene from the old Italian apple cultivar ‘Durello di Forl’ı. Acta Hortic 663:129–133CrossRefGoogle Scholar
  170. Tenzer I, Gessler C (1999) Genetic diversity of Venturia inaequalis across Europe. Eur J Plant Pathol 105:545–552CrossRefGoogle Scholar
  171. Thakur K, Chawla V, Bhatti S, Swarnkar MK, Kaur J, Shankar R, Jha G (2013) De novo transcriptome sequencing and analysis for Venturia inaequalis, the devastating apple scab pathogen. PLoS One 8(1):e53937PubMedPubMedCentralCrossRefGoogle Scholar
  172. van Nocker S, Gardiner SE (2014) Breeding better cultivars, faster: applications of new technologies for the rapid deployment of superior horticultural tree crops. Hortic Res 1:14022PubMedPubMedCentralCrossRefGoogle Scholar
  173. Vanblaere T, Szankowski I, Schaart J, Schouten H, Flachowsky H, Broggini GAL, Gessler C (2011) The development of a cisgenic apple plant. J Biotechnol 154:304–311PubMedCrossRefGoogle Scholar
  174. Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D et al (2010) The genome of the domesticated apple (Malus domestica Borkh.) Nat Genet 42:833–839PubMedCrossRefGoogle Scholar
  175. Vinatzer BA, Zhang HB, Sansavini S (1998) Construction and characterization of a bacterial artificial chromosome library of apple. Theor Appl Genet 97:1183–1190CrossRefGoogle Scholar
  176. Vinatzer BA, Patocchi A, Gianfranceschi L, Tartarini S, Zhang HB, Gessler C, Sansavini S (2001) Apple contains receptor-like genes homologous to the Cladosporium fulvum resistance gene family of tomato with a cluster of genes cosegregating with Vf apple scab resistance. Mol Plant-Microbe Interact 14:508–515PubMedCrossRefGoogle Scholar
  177. Vinatzer BA, Patocchi A, Tartarini S, Gianfranceschi L, Sansavini S, Gessler C (2004) Isolation of two microsatellite markers from BAC clones of the Vf scab resistance region and molecular characterization of scab-resistant accessions in Malus germplasm. Mol Breed 123:1–6Google Scholar
  178. Williams EB, Dayton DF, Shay JR (1996) Allelic genes in Malus for resistance to Venturia inaequalis. Proc Am Soc Hortic Sci 88:52–56Google Scholar
  179. Wurdig J, Flachowsky H, Saß A, Peil A, Hanke M (2015) Improving resistance of different apple cultivars using the Rvi6 scab resistance gene in a cisgenic approach based on the Flp/FRT recombinase system. Mol Breed 35:95CrossRefGoogle Scholar
  180. Xu ML, Korban SS (2000) Saturation mapping of the apple scab resistance gene Vf using AFLP markers. Theor Appl Genet 101:844–851CrossRefGoogle Scholar
  181. Xu ML, Korban SS (2002a) AFLP derived SCARs facilitate construction of a 11 Mb sequence ready map of a region that spans the Vf locus in the apple genome. Plant Mol Biol 50:803–818PubMedCrossRefGoogle Scholar
  182. Xu ML, Korban SS (2002b) A cluster of four receptor-like genes resides in the Vf locus that confers resistance to apple scab disease. Genetics 162:1995–2006PubMedPubMedCentralGoogle Scholar
  183. Xu ML, Korban SS (2004) Somatic variation plays a key role in the evolution of the Vf gene family residing in the Vf locus that confers resistance to apple scab disease. Mol Phylogenet Evol 32:57–65PubMedCrossRefGoogle Scholar
  184. Xu M, Korban SS, Song J, Jiang J (2002) Constructing a bacterial artificial chromosome library of the apple cultivar GoldRush. Acta Hortic 595:103-112Google Scholar
  185. Xu ML, Song J, Cheng Z, Jiang J, Korban SS (2001) A bacterial artificial chromosome (BAC) library of Malus floribunda 821 and contig construction for positional cloning of the apple scab resistance gene Vf. Genome 44:1104–1113PubMedCrossRefGoogle Scholar
  186. Xu X, Yang J, Thakur V, Roberts A, Barbara DJ (2008) Population variation of apple scab (Venturia inaequalis) isolates from Asia and Europe. Plant Dis 92:247–252CrossRefGoogle Scholar
  187. Xu X, Harvey N, Roberts A, Barbara D (2013) Population variation of apple scab (Venturia inaequalis) within mixed orchards in the UK. Eur J Plant Pathol 135:97–104CrossRefGoogle Scholar
  188. Yang H, Korban SS (1996) Screening apples for OPD20/600 using sequencespecific primers. Theor Appl Genet 92:263–266PubMedCrossRefGoogle Scholar
  189. Yang H, Kruger J (1994) Identification of an RAPD marker linked to the Vf gene for scab resistance in apples. Plant Breed 12:323–329CrossRefGoogle Scholar
  190. Yepes LM, Aldwinckle HS (1993) Pathogenesis of Venturia inaequalis on shoot-tip cultures and on greenhouse-grown apple cultivars. Phytopathology 11:1155–1164CrossRefGoogle Scholar
  191. Zhan J, Thrall PH, Burdon JJ (2014) Achieving sustainable plant disease management through evolutionary principles. Trends Plant Sci 19:570–575PubMedCrossRefGoogle Scholar
  192. Zhong Y, Yin H, Sargent DJ, Malnoy M, Cheng ZM (2015) Species-specific duplications driving the recent expansion of NBS-LRR genes in five Rosaceae species. BMC Genomics 14:16–77Google Scholar
  193. Zhu Y, Shao J, Zhou Z, Davis RE (2017) Comparative transcriptome analysis reveals a preformed defense system in apple root of a resistant genotype of G.935 in the absence of pathogen. Int J Plant Genomics 8950746Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yash P. Khajuria
    • 1
  • Sanjana Kaul
    • 1
  • Aijaz A. Wani
    • 2
  • Manoj K. Dhar
    • 1
  1. 1.School of BiotechnologyUniversity of JammuJammuIndia
  2. 2.Department of BotanyUniversity of KashmirSrinagarIndia

Personalised recommendations