Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Linking phenotype, genotype and environment to unravel genetic components underlying cold hardiness in coastal Douglas-fir (Pseudotsuga menziesii var. menziesii)

Abstract

Global climate change may detrimentally affect future generations of numerous forest tree species, hampering their long-term sustainability if appropriate evolutionary responses remain lacking. To face these novel threats, conservation biologists are in need of a thorough understanding and identification of adaptive variation in key fitness traits. We here provide an elaborate synthesis of pre-existing and novel analyses of an association mapping, genecological and landscape genomic study integrating genotypic, environmental and phenotypic data to gain insights into the genetic basis of cold-hardiness adaptation in coastal Douglas-fir (Pseudotsuga menziesii var. menziesii). Data were collected across part of the natural range for a total of 643 individuals. A landscape genomic approach revealed 28 putative non-neutral genes, although a variance partitioning analysis indicated only moderate power of this gene set in explaining cold-hardiness-related phenotypic variation, and suggests many important genes await discovery. Integrating these results within the entire phenotype-genotype-environment spectrum allowed us to delineate the six most promising candidate genes under selection. By combining genomic, phenotypic and environmental data, this study attempts to gain insights in the genetic basis of key adaptations, which may ultimately aid forestry managers to establish resilient ecosystems in face of future climate change.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Aitken SN, Adams WT (1996) Genetics of fall and winter cold hardiness of coastal Douglas-fir in Oregon. Can J For Res 26(10):1828–1837. https://doi.org/10.1139/x26-208

  2. Aitken SN, Yeaman S, Holliday JA, Wang TL, Curtis-McLane S (2008) Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol Appl 1(1):95–111. https://doi.org/10.1111/j.1752-4571.2007.00013.x

  3. Alberto FJ, Aitken SN, Alía R, González-Martínez SC, Hänninen H, Kremer A, Lefèvre F, Lenormand T, Yeaman S, Whetten R, Savolainen O (2013) Potential for evolutionary responses to climate change—evidence from tree populations. Glob Chang Biol 19(6):1645–1661. https://doi.org/10.1111/gcb.12181

  4. Arora R, Agarwal P, Ray S, Singh AK, Singh VP, Tyagi AK, Kapoor S (2007) MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genomics 8(1):242–242. https://doi.org/10.1186/1471-2164-8-242

  5. Bansal S, St Clair JB, Harrington CA, Gould PJ (2015) Impact of climate change on cold hardiness of Douglas-fir (Pseudotsuga menziesii): environmental and genetic considerations. Glob Chang Biol 21(10):3814–3826. https://doi.org/10.1111/gcb.12958

  6. Barrett RDH, Hoekstra HE (2011) Molecular spandrels: tests of adaptation at the genetic level. Nat Rev Genet 12(11):767–780. https://doi.org/10.1038/nrg3015

  7. Beck EH, Heim R, Hansen J (2004) Plant resistance to cold stress: mechanisms and environmental signals triggering frost hardening and dehardening. J Biosci 29(4):449–459. https://doi.org/10.1007/BF02712118

  8. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate—a practical and powerful approach to multiple testing. J Roy Stat Soc Ser B-Methodol 57:289–300

  9. Berg JJ, Coop G (2014) A population genetic signal of polygenic adaptation. PLoS Genet 10(8):e1004412. https://doi.org/10.1371/journal.pgen.1004412

  10. Bigras FJ, S Colombo 2001 Conifer cold hardiness, Dordrecht, DOI: https://doi.org/10.1007/978-94-015-9650-3

  11. Bragg JG, Supple MA, Andrew RL, Borevitz JO (2015) Genomic variation across landscapes: insights and applications. New Phytol 207(4):953–967. https://doi.org/10.1111/nph.13410

  12. Breed MF, Ottewell KM, Gardner MG, Lowe AJ (2011) Clarifying climate change adaptation responses for scattered trees in modified landscapes. J Appl Ecol 48(3):637–641. https://doi.org/10.1111/j.1365-2664.2011.01969.x

  13. Chowdhury MEK, Choi B, Cho BK, Kim JB, Park SU, Natarajan S, Lim HS, Bae H (2013) Regulation of 4CL, encoding 4-coumarate: coenzyme A ligase, expression in kenaf under diverse stress conditions. Plant OMICS 6:254–262

  14. Colaneri AC, Jones AM (2014) The wiring diagram for plant G signaling. Curr Opin Plant Biol 22:56–64. https://doi.org/10.1016/j.pbi.2014.09.004

  15. Coop G, Witonsky D, Di Rienzo A, Pritchard JK (2010) Using environmental correlations to identify loci underlying local adaptation. Genetics 185(4):1411–1423. https://doi.org/10.1534/genetics.110.114819

  16. De Kort H, Vandepitte K, Bruun HH, Closset-Kopp D, Honnay O, Mergeay J (2014) Landscape genomics and a common garden trial reveal adaptive differentiation to temperature across Europe in the tree species Alnus glutinosa. Mol Ecol 23(19):4709–4721. https://doi.org/10.1111/mec.12813

  17. de Villemereuil P, Frichot É, Bazin É, François O, Gaggiotti OE (2014) Genome scan methods against more complex models: when and how much should we trust them? Mol Ecol 23(8):2006–2019. https://doi.org/10.1111/mec.12705

  18. Deng W, Casao MC, Wang P, Sato K, Hayes PM, Finnegan EJ, Trevaskis B (2015) Direct links between the vernalization response and other key traits of cereal crops. Nat Commun 6:5882. https://doi.org/10.1038/ncomms6882

  19. Eckert A, Maloney P, Vogler D, Jensen C, Mix A, Neale D (2015) Local adaptation at fine spatial scales: an example from sugar pine (Pinus lambertiana, Pinaceae). Tree Genet Genomes 11:1–17

  20. Eckert AJ, Bower AD, González-Martinez SC, Wegrzyn JL, Coop G, Neale DB (2010) Back to nature: ecological genomics of loblolly pine (Pinus taeda, Pinaceae). Mol Ecol 19(17):3789–3805. https://doi.org/10.1111/j.1365-294X.2010.04698.x

  21. Eckert AJ, Bower AD, Wegrzyn JL, Pande B, Jermstad KD, Krutovsky KV, Clair JBS, Neale DB (2009a) Asssociation genetics of coastal Douglas fir (Pseudotsuga menziesu var. menziesii, Pinaceae). I. Cold-hardiness related traits. Genetics 182(4):1289–1302. https://doi.org/10.1534/genetics.109.102350

  22. Eckert AJ, Wegrzyn JL, Pande B, Jermstad KD, Lee JM, Liechty JD, Tearse BR, Krutovsky KV, Neale DB (2009b) Multilocus patterns of nucleotide diversity and divergence reveal positive selection at candidate genes related to cold hardiness in coastal Douglas fir (Pseudotsuga menziesii var. menziesii). Genetics 183(1):289–298. https://doi.org/10.1534/genetics.109.103895

  23. Edmonds CA, Lillie AS, Cavalli-Sforza LL (2004) Mutations arising in the wave front of an expanding population. Proc Natl Acad Sci U S A 101(4):975–979. https://doi.org/10.1073/pnas.0308064100

  24. Falconer DS, TFC Mackay 1996 Introduction to quantitative genetics

  25. Fins L, ST Friedman, JV Brotschol 1992 Handbook of quantitative forest genetics, Dordrecht, DOI: https://doi.org/10.1007/978-94-015-7987-2

  26. Forester BR, JR Lasky, HH Wagner, DL Urban 2017 Using genotype environment associations to identify multilocus local adaptation. bioRxiv:1–24. doi: https://doi.org/10.1101/129460

  27. Fournier-Level A, Korte A, Cooper MD, Nordborg M, Schmitt J, Wilczek AM (2011) A map of local adaptation in Arabidopsis thaliana. Science 334(6052):86–89. https://doi.org/10.1126/science.1209271

  28. Frichot E, Schoville SD, Bouchard G, François O (2013) Testing for associations between loci and environmental gradients using latent factor mixed models. Mol Biol Evol 30(7):1687–1699. https://doi.org/10.1093/molbev/mst063

  29. Friendly M (2002) Corrgrams: exploratory displays for correlation matrices. Am Stat 56(4):316–324. https://doi.org/10.1198/000313002533

  30. Gao F, Zhou Y, Zhu W, Li X, Fan L, Zhang G (2009) Proteomic analysis of cold stress-responsive proteins in Thellungiella rosette leaves. Planta 230(5):1033–1046. https://doi.org/10.1007/s00425-009-1003-6

  31. Garay-Arroyo A, Colmenero-Flores JM, Garciarrubio A, Covarrubias AA (2000) Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit. J Biol Chem 275(8):5668–5674. https://doi.org/10.1074/jbc.275.8.5668

  32. González-Martinez SC, Krutovsky KV, Neale DB (2006) Forest-tree population genomics and adaptive evolution. New Phytol 170(2):227–238. https://doi.org/10.1111/j.1469-8137.2006.01686.x

  33. Guak S, Olsyzk DM, Fuchigami LH, Tingey DT (1998) Effects of elevated CO(2) and temperature on cold hardiness and spring bud burst and growth in Douglas-fir (Pseudotsuga menziesii). Tree Physiol 18(10):671–679. https://doi.org/10.1093/treephys/18.10.671

  34. Günther T, Coop G (2013) Robust identification of local adaptation from allele frequencies. Genetics 195(1):205–220. https://doi.org/10.1534/genetics.113.152462

  35. Hancock AM, Brachi B, Faure N, Horton MW, Jarymowycz LB, Sperone FG, Toomajian C, Roux F, Bergelson J (2011) Adaptation to climate across the Arabidopsis thaliana genome. Science 334(6052):83–86. https://doi.org/10.1126/science.1209244

  36. Hannah MA, Heyer AG, Hincha DK (2005) A global survey of gene regulation during cold acclimation in Arabidopsis thaliana. PLoS Genet 1(2):e26. https://doi.org/10.1371/journal.pgen.0010026

  37. Harrisson KA, Pavlova A, Telonis-Scott M, Sunnucks P (2014) Using genomics to characterize evolutionary potential for conservation of wild populations. Evol Appl 7(9):1008–1025. https://doi.org/10.1111/eva.12149

  38. Hijmans RJ, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25(15):1965–1978. https://doi.org/10.1002/joc.1276

  39. Holliday JA, Ritland K, Aitken SN (2010) Widespread, ecologically relevant genetic markers developed from association mapping of climate-related traits in Sitka spruce (Picea sitchensis). New Phytol 188(2):501–514. https://doi.org/10.1111/j.1469-8137.2010.03380.x

  40. Holliday JA, Wang T, Aitken S (2012) Predicting adaptive phenotypes from multilocus genotypes in Sitka spruce (Picea sitchensis) using random forest. G3: Genes, Genomes, Genetics 2:1085–1093

  41. IPCC (2013) Fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, New York, USA

  42. Jermstad KD, Bassoni DL, Jech KS, Ritchie GA, Wheeler NC, Neale DB (2003) Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas fir. III. Quantitative trait loci-by-environment interactions. Genetics 165(3):1489–1506

  43. Jermstad KD, Bassoni DL, Jech KS, Wheeler NC, Neale DB (2001a) Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir. I. Timing of vegetative bud flush. Theor Appl Genet 102(8):1142–1151. https://doi.org/10.1007/s001220000505

  44. Jermstad KD, Bassoni DL, Wheeler NC, Anekonda TS, Aitken SN, Adams WT, Neale DB (2001b) Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir. II. Spring and fall cold-hardiness. Theor Appl Genet 102(8):1152–1158. https://doi.org/10.1007/s001220000506

  45. Jones MR, Forester BR, Teufel AI, Adams RV, Anstett DN, Goodrich BA, Landguth EL, Joost S, Manel S (2013) Integrating landscape genomics and spatially explicit approaches to detect loci under selection in clinal populations. Evolution 67(12):3455–3468. https://doi.org/10.1111/evo.12237

  46. Klopfstein S, Currat M, Excoffier L (2006) The fate of mutations surfing on the wave of a range expansion. Mol Biol Evol 23(3):482–490. https://doi.org/10.1093/molbev/msj057

  47. Kremer A, Ronce O, Robledo-Arnuncio JJ, Guillaume F, Bohrer G, Nathan R, Bridle JR, Gomulkiewicz R, Klein EK, Ritland K, Kuparinen A, Gerber S, Schueler S (2012) Long-distance gene flow and adaptation of forest trees to rapid climate change. Ecol Lett 15(4):378–392. https://doi.org/10.1111/j.1461-0248.2012.01746.x

  48. Krutovsky KV, Clair JBS, Saich R, Hipkins VD, Neale DB (2009) Estimation of population structure in coastal Douglas-fir Pseudotsuga menziesii (Mirb.) Franco var. menziesii using allozyme and microsatellite markers. Tree Genet Genomes 5(4):641–658. https://doi.org/10.1007/s11295-009-0216-y

  49. Langlet O (1971) Two hundred years of genecology. Taxon 20(5/6):653–722. https://doi.org/10.2307/1218596

  50. Le Corre V, Kremer A (2003) Genetic variability at neutral markers, quantitative trait loci and trait in a subdivided population under selection. Genetics 164(3):1205–1219

  51. Le Corre V, Kremer A (2012) The genetic differentiation at quantitative trait loci under local adaptation. Mol Ecol 21(7):1548–1566. https://doi.org/10.1111/j.1365-294X.2012.05479.x

  52. Lee BH, Henderson DA, Zhu J-K (2005) The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell 17(11):3155–3175. https://doi.org/10.1105/tpc.105.035568

  53. Lepais O, Bacles CFE (2014) Two are better than one: combining landscape genomics and common gardens for detecting local adaptation in forest trees. Mol Ecol 23(19):4671–4673. https://doi.org/10.1111/mec.12906

  54. Li B, Ning L, Zhang J, Bao M, Zhang W (2015) Transcriptional profiling of Petunia seedlings reveals candidate regulators of the cold stress response. Front Plant Sci 6:118

  55. Lind BM, Friedline CJ, Wegrzyn J, Maloney PE, Vogler DR, Neale DB, Eckert A (2017) Water availability drives signatures of local adaptation in whitebark pine (Pinus albicaulis Englm.) across fine spatial scales of the Lake Tahoe Basin, USA. Mol Ecol 26(12):3168–3185. https://doi.org/10.1111/mec.14106

  56. Lorenz WW, Sun F, Liang C, Kolychev D, Wang H, Zhao X, Cordonnier-Pratt MM, Pratt LH, Dean JF (2006) Water stress-responsive genes in loblolly pine (Pinus taeda) roots identified by analyses of expressed sequence tag libraries. Tree Physiol 26(1):1–16. https://doi.org/10.1093/treephys/26.1.1

  57. Moura JC, Bonine CA, de Oliveira Fernandes Viana J, Dornelas MC, Mazzafera P (2010) Abiotic and biotic stresses and changes in the lignin content and composition in plants. J Integr Plant Biol 52(4):360–376. https://doi.org/10.1111/j.1744-7909.2010.00892.x

  58. Nadeau S, Meirmans PG, Aitken SN, Ritland K, Isabel N (2016) The challenge of separating signatures of local adaptation from those of isolation by distance and colonization history: the case of two white pines. Ecol Evol 6(24):8649–8664. https://doi.org/10.1002/ece3.2550

  59. Narum SR, Hess JE (2011) Comparison of F(ST) outlier tests for SNP loci under selection. Mol Ecol Resour 11:184–194. https://doi.org/10.1111/j.1755-0998.2011.02987.x

  60. Neale DB, Kremer A (2011) Forest tree genomics: growing resources and applications. Nat Rev Genet 12(2):111–122. https://doi.org/10.1038/nrg2931

  61. Neale DB, Savolainen O (2004) Association genetics of complex traits in conifers. Trends Plant Sci 9(7):325–330. https://doi.org/10.1016/j.tplants.2004.05.006

  62. O'Neill GA, Aitken SN, Adams WT (2000) Genetic selection for cold hardiness in coastal Douglas-fir seedlings and saplings. Can J For Res 30(11):1799–1807. https://doi.org/10.1139/x00-114

  63. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin RP, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner APH 2017 Vegan: community ecology package. R package version 2.4–2

  64. Pardo-Diaz C, Salazar C, Jiggins CD (2015) Towards the identification of the loci of adaptive evolution. Methods Ecol Evol 6(4):445–464. https://doi.org/10.1111/2041-210X.12324

  65. Peakall R, Ruibal M, Lindenmayer DB (2003) Spatial autocorrelation analysis offers new insights into gene flow in the Australian bush rat, Rattus fuscipes. Evolution 57(5):1182–1195. https://doi.org/10.1111/j.0014-3820.2003.tb00327.x

  66. Peakall R, Smouse PE (2006) Genalex 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6(1):288–295. https://doi.org/10.1111/j.1471-8286.2005.01155.x

  67. Prunier J, Gerardi S, Laroche J, Beaulieu J, Bousquet J (2012) Parallel and lineage-specific molecular adaptation to climate in boreal black spruce. Mol Ecol 21(17):4270–4286. https://doi.org/10.1111/j.1365-294X.2012.05691.x

  68. R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

  69. Rajora OP, Eckert AJ, Zinck JWR (2016) Single-locus versus multilocus patterns of local adaptation to climate in eastern white pine (Pinus strobus, Pinaceae). PLoS One 11(7):e0158691. https://doi.org/10.1371/journal.pone.0158691

  70. Rehfeldt GE, Jaquish BC, Sáenz-Romero C, Joyce DG, Leites LP, Bradley St Clair J, López-Upton J (2014) Comparative genetic responses to climate in the varieties of Pinus ponderosa and Pseudotsuga menziesii: reforestation. For Ecol Manag 324:147–157. https://doi.org/10.1016/j.foreco.2014.02.040

  71. SAS Institute (2008) SAS/STAT User’s guide, version 9.2. Cary, NC: SAS Institute Inc.

  72. Schoville SD, Bonin A, François O, Lobreaux S, Melodelima C, Manel S (2012) Adaptive genetic variation on the landscape: methods and cases. Annu Rev Ecol Evol Syst 43(1):23–43. https://doi.org/10.1146/annurev-ecolsys-110411-160248

  73. Sork VL, Aitken SN, Dyer RJ, Eckert AJ, Legendre P, Neale DB (2013) Putting the landscape into the genomics of trees: approaches for understanding local adaptation and population responses to changing climate. Tree Genet Genomes 9(4):901–911. https://doi.org/10.1007/s11295-013-0596-x

  74. St Clair JB (2006) Genetic variation in fall cold hardiness in coastal Douglas-fir in western Oregon and Washington. Can J Bot Rev Can Bot 84:1110–1121

  75. St Clair JB, Mandel NL, Vance-Boland KW (2005) Genecology of Douglas fir in western Oregon and Washington. Ann Bot 96(7):1199–1214. https://doi.org/10.1093/aob/mci278

  76. Storey JD (2002) A direct approach to false discovery rates. J Roy Stat Soc Ser B Stat Methodol 64(3):479–498. https://doi.org/10.1111/1467-9868.00346

  77. Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci U S A 100(16):9440–9445. https://doi.org/10.1073/pnas.1530509100

  78. Travis JMJ, Münkemüller T, Burton OJ, Best A, Dytham C, Johst K (2007) Deleterious mutations can surf to high densities on the wave front of an expanding population. Mol Biol Evol 24(10):2334–2343. https://doi.org/10.1093/molbev/msm167

  79. Trevaskis, B., D. J. Bagnall, M. H. Ellis, W. J. Peacock, and E. S. Dennis. 2003. MADS box genes control vernalization-induced flowering in cereals. Proceedings of the National Academy of Sciences 100:13099–13104

  80. Vekemans X, Hardy OJ (2004) New insights from fine-scale spatial genetic structure analyses in plant populations. Mol Ecol 13(4):921–935. https://doi.org/10.1046/j.1365-294X.2004.02076.x

  81. Wang T, Hamann A, Spittlehouse D, Murdock TN (2012) ClimateWNA – high-resolution spatial climate data for western North America. J Appl Meteorol Climatol 61:16–29

  82. Wegrzyn JL, Eckert AJ, Choi M, Lee JM, Stanton BJ, Sykes R, Davis MF, Tsai CJ, Neale DB (2010) Association genetics of traits controlling lignin and cellulose biosynthesis in black cottonwood (Populus trichocarpa, Salicaceae) secondary xylem. New Phytol 188(2):515–532. https://doi.org/10.1111/j.1469-8137.2010.03415.x

  83. Wheeler NC, Jermstad KD, Krutovsky K, Aitken SN, Howe GT, Krakowski J, Neale DB (2005) Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir. IV. Cold-hardiness QTL verification and candidate gene mapping. Mol Breed 15(2):145–156. https://doi.org/10.1007/s11032-004-3978-9

  84. White TL, WT Adams, DB Neale 2007 Forest genetics. Cambridge, DOI: https://doi.org/10.1079/9781845932855.0000

  85. Yadav DK, Shukla D, Tuteja N (2014) Isolation, in silico characterization, localization and expression analysis of abiotic stress-responsive rice G-protein β subunit (RGB1). Plant Signal Behav 9(5):e28890. https://doi.org/10.4161/psb.28890

  86. Yeaman S, Hodgins KA, Lotterhos KE, Suren H, Nadeau S, Degner JC, Nurkowski KA, Smets P, Wang T, Gray LK, Liepe KJ, Hamann A, Holliday JA, Whitlock MC, Rieseberg LH, Aitken SN (2016) Convergent local adaptation to climate in distantly related conifers. Science 353(6306):1431–1433. https://doi.org/10.1126/science.aaf7812

Download references

Acknowledgements

We are indebted to John Liechty for his invaluable bioinformatics assistance. Funding for this project was made available through a U.S. Department of Agriculture National Research Initiative Plant Genome grant (04-712-0084). A postdoctoral fellowship from the Belgian American Educational Foundation (BAEF) and a travel grant from the Research Foundation–Flanders (FWO) was awarded to CV.

Data archiving statement

Genotypic, phenotypic and environmental data has been deposited in the Figshare Database and has been made accessible using the provisional DOI https://doi.org/10.6084/m9.figshare.5167657.v1.

Author information

Correspondence to Carl Vangestel.

Additional information

Communicated by S. C. González-Martínez

Electronic supplementary material

ESM 1

(DOCX 5.80 mb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vangestel, C., Eckert, A.J., Wegrzyn, J.L. et al. Linking phenotype, genotype and environment to unravel genetic components underlying cold hardiness in coastal Douglas-fir (Pseudotsuga menziesii var. menziesii). Tree Genetics & Genomes 14, 10 (2018). https://doi.org/10.1007/s11295-017-1225-x

Download citation

Keywords

  • Coastal Douglas-fir
  • Pseudotsuga menziesii
  • Cold-hardiness
  • Adaptation
  • Landscape genomics