Advertisement

Tree Genetics & Genomes

, 13:77 | Cite as

Genetic analysis of the slow-melting flesh character in peach

  • Octávio Serra
  • Jordi Giné-Bordonaba
  • Iban Eduardo
  • Joan Bonany
  • Gemma Echeverria
  • Christian Larrigaudière
  • Pere ArúsEmail author
Original Article
Part of the following topical collections:
  1. Complex Traits

Abstract

The slow-melting flesh (SMF) trait in peach [Prunus persica (L.) Batsch] defines a slower process of postharvest fruit-softening than the prevalent melting flesh (MF) types. This gives a longer shelf life and a delayed harvest-time resulting in better fruit quality. Unlike other known fruit texture traits, SMF is difficult to measure and has a complex inheritance. We examined this character over 2 years in the offspring of two crosses, both with “Big Top,” an SMF nectarine, as the female parent, and with a melting flesh (MF) nectarine as the male parent (“Armking” and “Nectaross”). Following harvest, a texturometer was used to provide a textural profile analysis, and fruit firmness evolution was measured with a penetrometer over a period of 5 days’ storage at 20 °C. Linkage maps were constructed with a high-density SNP chip, and a phenotype-genotype analysis allowed the detection of three independent genomic regions where most QTLs (quantitative trait loci) were located. Two of these, on linkage groups 4 and 5, explained the variability for two characters—maturity date and firmness loss—that is, the QTL on linkage group 4 found in the MF parents and that on linkage group 5 in Big Top. A third region on linkage group 6, which identified a QTL for maturity date only in Armking, has no apparent association to the softening process. The relationship between maturity date and fruit-firmness loss and a hypothesis on the inheritance of the SMF character are discussed.

Keywords

Prunus persica Postharvest behavior Marker-assisted selection Maturity date Fruit flesh texture 

Notes

Acknowledgements

We acknowledge financial support from the Spanish Ministry of Economy and Competitiveness through the project AGL2015-68329-R, from “Severo Ochoa Programme for Centres of Excellence in R&D” 2016–2019 (SEV-2015-0533)”, from the CERCA Programme-Generalitat de Catalunya and from the EU Seventh Framework Programme by the FruitBreedomics project (FP7-KBBE-2010-265582): an Integrated Approach for Increasing Breeding Efficiency in Fruit Tree Crop. The views expressed in this work are the sole responsibility of the authors and do not necessarily reflect the views of the European Commission. We thank Arsène and Laurance Maillard from Agro Selection Fruits for their advice in the selection of the parents of the progenies used in this paper.

Supplementary material

11295_2017_1160_MOESM1_ESM.pdf (1 mb)
ESM 1 (PDF 1.03 mb)
11295_2017_1160_MOESM2_ESM.pdf (1020 kb)
ESM 2 (PDF 0.99 mb)

References

  1. Altschul SF, Thomas LM, Alejandro AS, Jinghui Z, Zheng Z, Webb M, David JL (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bassi D, Monet R (2008) Botany and taxonomy. In: Layne DR, Bassi D (eds) The peach: botany, production and uses. CABI, Wallingford, pp 1–36Google Scholar
  3. Begheldo M, Manganaris GA, Bonghi C, Tonutti P (2008) Different postharvest conditions modulate ripening and ethylene biosynthetic and signal transduction pathways in stony hard peaches. Postharvest Biol Tec 48:84–91CrossRefGoogle Scholar
  4. Bourne M (2002) Food texture and viscosity, 2nd edn. Academic Press, San DiegoGoogle Scholar
  5. de Souza VA, Byrne DH, Taylor JF (1998) Heritability, genetic and phenotypic correlations, and predicted selection response of quantitative traits in peach: II. An analysis of several fruit traits. J Amer Soc Hortic Sci 123:604–611Google Scholar
  6. Dirlewanger E, Quero-García J, Le Dantec L, Lambert P, Ruiz D, Dondini L, Illa E, Quilot-Turion B, Audergon JM, Tartarini S, Letourmy P, Arús P (2012) Comparison of the genetic determinism of two key phenological traits, flowering and maturity dates, in three Prunus species: peach, apricot and sweet cherry. Heredity 109:280–292CrossRefPubMedPubMedCentralGoogle Scholar
  7. Donoso JM, Eduardo I, Picañol R, Batlle I, Howad W, Aranzana MJ, Arús P (2015) High-density mapping suggests cytoplasmic male sterility with two restorer genes in almond × peach progenies. Hortic Res 2:15016CrossRefPubMedPubMedCentralGoogle Scholar
  8. Donoso JM, Picañol R, Serra O, Howad W, Alegre S, Arús P, Eduardo I (2016) Exploring almond genetic variability useful for peach improvement: mapping major genes and QTLs in two inter-specific almond × peach populations. Mol Breeding 36:16CrossRefGoogle Scholar
  9. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15Google Scholar
  10. Eduardo I, Pacheco I, Chietera G, Bassi D, Pozzi C, Vecchietti A, Rossini L (2011) QTL analysis of fruit quality traits in two peach intraspecific populations and importance of maturity date pleiotropic effect. Tree Genet Genomes 7:323–335CrossRefGoogle Scholar
  11. Eduardo I, Chietera G, Pirona R, Pacheco I, Troggio M, Banchi E, Bassi D, Rossini L, Vecchietti A, Pozzi C (2013) Genetic dissection of aroma volatile compounds from the essential oil of peach fruit: QTL analysis and identification of candidate genes using dense SNP maps. Tree Genet Genomes 9:189–204CrossRefGoogle Scholar
  12. Eduardo I, Picañol R, Rojas E, Batlle I, Howad W, Aranzana MJ, Arús P (2015) Mapping of a major gene for the slow ripening character in peach: co-location with the maturity date gene and development of a candidate gene-based diagnostic marker for its selection. Euphytica 205:627–636CrossRefGoogle Scholar
  13. Fresnedo-Ramírez J, Frett TJ, Sandefur PJ, Salgado-Rojas A, Clark JR, Gasic K, Peace CP, Anderson N, Hartmann TP, Byrne DH, Bink MCAM, Weg E, Crisosto CH, Gradziel TM (2016) QTL mapping and breeding value estimation through pedigree-based analysis of fruit size and weight in four diverse peach breeding programs. Tree Genet Genomes 12:1–18CrossRefGoogle Scholar
  14. Ghiani A, Negrini N, Morgutti S, Baldin F, Nocito FF, Spinardi A, Mignani I, Bassi D, Cocucci M (2011) Melting of ‘Big Top’ nectarine fruit: some physiological, biochemical, and molecular aspects. J Amer Soc Hortic Sci 136:61–68Google Scholar
  15. Giné-Bordonaba J, Cantín CM, Echeverría G, Ubach D, Larrigaudière C (2016) The effect of chilling injury-inducing storage on qualty and consumer acceptance of different Prunus persica cultivars. Postharvest Biol Tec 115:38–47CrossRefGoogle Scholar
  16. Gu C, Wang L, Wang W, Zhou H, Ma BQ, Zheng HY, Fang T, Ogutu C, Vimolmangkang S, Han YP (2016) Copy number variation of a gene cluster encoding endopolygalacturonase mediates flesh texture and stone adhesion in peach. J Exp Bot 67:1993–2005CrossRefPubMedPubMedCentralGoogle Scholar
  17. Haji T, Yaegaki H, Yamaguchi M (2001) Changes in ethylene production and flesh firmness of melting, nonmelting and stony hard peaches after harvest. J Jpn Soc Hortic Sci 70:458–459CrossRefGoogle Scholar
  18. Haji T, Yaegaki H, Yamaguchi M (2005) Inheritance and expression of fruit texture melting, non-melting and stony hard in peach. Sci Hortic 105:241–248CrossRefGoogle Scholar
  19. Harker FR, Maindonald J, Murray SH, Gunson FA, Hallett IC, Walker SB (2002) Sensory interpretation of instrumental measurements 1: texture of apple fruit. Postharvest Biol Technol 24:225–239CrossRefGoogle Scholar
  20. Harker FR, White A, Gunson FA, Hallett IC, De Silva HN (2006) Instrumental measurement of apple texture: a comparison of the single-edge notched bend test and the penetrometer. Postharvest Biol Technol 39:185–192CrossRefGoogle Scholar
  21. Hayama H, Tatsuki M, Ito A, Kashimura Y (2006) Ethylene and fruit softening in the stony hard mutation in peach. Postharvest Biol Tec 41:16–21CrossRefGoogle Scholar
  22. Iglesias I (2012) Producción, consumo e innovación varietal en el melocotón. Alimentación, Equipos y tecnología 268:25–31 ISSN 0212-1689 Google Scholar
  23. Iglesias I, Echeverria G (2009) Differential effect of cultivar and harvest date on nectarine colour, quality and consumer acceptance. Sci Hortic 120:41–50CrossRefGoogle Scholar
  24. Lambert P, Campoy JA, Pacheco I, Mauroux JB, Da Silva LC, Micheletti D, Bassi D, Rossini L, Dirlewanger E, Pascal T, Troggio M, Aranzana MJ, Patocchi A, Arús P (2016) Identifying SNP markers tightly associated with six major genes in peach [Prunus persica (L.) Batsch] using a high-density SNP array with an objective of marker-assisted selection (MAS). Tree Genet Genomes 12:121CrossRefGoogle Scholar
  25. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181CrossRefPubMedGoogle Scholar
  26. Lester DR, Sherman WB, Atwell BJ (1996) Endopolygalacturonase and the melting flesh (M) locus in peach. J Amer Soc Hortic Sci 121:231–235Google Scholar
  27. Martínez-García PJ, Parfitt DE, Ogundiwin EA, Fass J, Chan HM, Ahmad R, Lurie S, Dandekar A, Gradziel TM, Crisosto CH (2013) High density SNP mapping and QTL analysis for fruit quality characteristics in peach (Prunus persica L.) Tree Genet Genomes 9:19–36CrossRefGoogle Scholar
  28. Meneses C, Ulloa-Zepeda L, Cifuentes-Esquivel A, Infante R, Cantin C, Batlle I, Arús P, Eduardo I (2016) A codominant diagnostic marker for the slow ripening trait in peach. Mol Breeding 36:77CrossRefGoogle Scholar
  29. Nuñez-Lillo G, Cifuentes-Esquivel A, Troggio M, Micheletti D, Infante R, Campos-Vargas R, Orellana A, Blanco-Herrera F, Meneses C (2015) Identification of candidate genes associated with mealiness and maturity date in peach [Prunus persica (L.) Batsch] using QTL analysis and deep sequencing. Tree Genet Genomes 11:86CrossRefGoogle Scholar
  30. Pan L, Zeng WF, Niu L, Lu ZH, Liu H, Cui GC, Zhu YQ, Chu JF, Li WP, Fang WF, Cai ZG, Li GH, Wang ZQ (2015) PpYUC11, a strong candidate gene for the stony hard phenotype in peach (Prunus persica L. Batsch), participates in IAA biosynthesis during fruit ripening. J Exp Bot 66:7031–7044CrossRefPubMedPubMedCentralGoogle Scholar
  31. Peace CP, Crisosto CH, Gradziel TM (2005) Endopolygalacturonase: a candidate gene for freestone and melting flesh in peach. Mol Breeding 16:21–31CrossRefGoogle Scholar
  32. Pirona R, Eduardo I, Pacheco I, Da Silva LC, Miculan M, Verde I, Tartarini S, Dondini L, Pea G, Bassi D, Rossini L (2013) Fine mapping and identification of a candidate gene for a major locus controlling maturity date in peach. BMC Plant Biol 13:166CrossRefPubMedPubMedCentralGoogle Scholar
  33. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna URL http://www.R-project.org/ Google Scholar
  34. Ramina A, Tonutti P, McGlasson B (2008) Ripening, nutrition and postharvest physiology. In: Layne DR, Bassi D (eds) The peach: botany, production and uses. CABI, Wallingford, pp 550–574CrossRefGoogle Scholar
  35. Ramming DW (1991) Genetic control of a slow-ripening fruit trait in nectarine. Can J Plant Sci 71:601–603CrossRefGoogle Scholar
  36. Reig G, Alegre S, Cantín CM, Gatius F, Iglesias I (2017) Tree ripening and postharvest firmness loss of eleven commercial nectarine cultivars under Mediterranean conditions. Sci Hortic 219:335–343CrossRefGoogle Scholar
  37. Salgado A, Clark J, Sandefur P, Frett T, Peace C (2014) Softening rate and ethylene fruit production of different flesh textures of Arkansas peach and nectarine germplasm. American Society for Horticultural Science Congress, Orlando, FL, USA, July 27th to August 1st, 2014Google Scholar
  38. Sánchez-Pérez R, Howad W, Dicenta F, Arús P, Martínez-Gómez P (2007) Mapping major genes and quantitative trait loci controlling agronomic traits in almond. Plant Breed 125:1–9Google Scholar
  39. Van Ooijen JW (2009) MapQTL® 6, software for the mapping of quantitative trait loci in experimental populations of diploid species. Kyazma B.V, WageningenGoogle Scholar
  40. Verde I, Quarta R, Cedrola C, Dettori MT (2002) QTL analysis of agronomic traits in a BC1 peach population. Acta Hortic 592:291–297CrossRefGoogle Scholar
  41. Verde I, Bassil N, Scalabrin S, Gilmore B, Lawley CT, Gasic K, Micheletti D, Rosyara UR, Cattonaro F, Vendramin E, Main D, Aramini V, Blas AL, Mockler TC, Bryant DW, Wilhelm L, Troggio M, Sosinski B, Aranzana MJ, Arús P, Iezzoni A, Morgante M, Peace C (2012) Development and evaluation of a 9K SNP array for peach by internationally coordinated SNP detection and validation in breeding germplasm. PLoS One 7:e35668CrossRefPubMedPubMedCentralGoogle Scholar
  42. Zeballos JL, Abidi W, Giménez R, Monforte AJ, Moreno MA, Gogorcena Y (2016) Mapping QTLs associated with fruit quality traits in peach [Prunus persica (L.) Batsch] using SNP maps. Tree Genet Genomes 12:37CrossRefGoogle Scholar
  43. Ziosi V, Noferini M, Fiori G, Tadiello A, Trainotti L, Casadoro G, Costa G (2008) A new index based on vis spectroscopy to characterize the progression of ripening in peach fruit. Postharvest Biol Tec 49:319–329CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.IRTA Centre de Recerca en Agrigenòmica CSIC-IRTA-UAB-UBBarcelonaSpain
  2. 2.IRTA FruitcentreLleidaSpain
  3. 3.IRTA Mas BadiaLa TalladaSpain

Personalised recommendations