Tree Genetics & Genomes

, 13:71 | Cite as

A meta-analysis of molecular marker genetic datasets for eastern Africa trees supports the utility of potential natural vegetation maps for planning climate-smart restoration initiatives

  • Ian K. Dawson
  • Paulo van Breugel
  • Richard Coe
  • Roeland Kindt
  • Maarten van Zonneveld
  • Jens-Peter B. Lillesø
  • Lars Graudal
  • Alice Muchugi
  • Joanne Russell
  • Ramni Jamnadass
Original Article
Part of the following topical collections:
  1. Gene Conservation


Forest and woodland landscape restoration is a key undertaking of renewed interest for forestry and conservation practitioners, but is hampered by the lack of information on the distributions of tree species and of patterns of intra-specific genetic variation. Through the first meta-analysis of its type, we here tested the utility of a high-resolution potential natural vegetation (PNV) map for eastern Africa (vegetationmap4africa) for supporting restoration activities by comparison with 20 molecular marker genetic datasets, identified through literature review and other sources, for ten indigenous tree species. Our analysis indicated that site suitability and stability values from PNV-based ecological niche modelling involving current and past climate scenarios were positively related to population genetic diversity values revealed by molecular markers, supporting the value of PNV maps for the practical planning of restoration activities accounting for anthropogenic climate change. Furthermore, population pairwise genetic divergence was strongly positively correlated with population pairwise geographic distances for most datasets, indicating generalizable sampling implications for tree genetic resource conservation in the region. Population pairwise genetic divergence was however not well explained by sampling across PNV and wider physiognomic types, possibly due to molecular markers’ adaptive neutrality and high rates of recombination in trees, among other factors. Patterns of neutral molecular marker variation are thus no substitute for trials of adaptive variation for confirming or refuting the utility of vegetation boundaries in defining tree planting zones. We discuss the importance of results for eastern Africa and more widely.


Adaptive neutrality Ecological niche modelling Landscape restoration Molecular marker genetic variation Potential natural vegetation vegetationmap4africa 



The authors gratefully acknowledge Taye Ayele for providing a copy of his PhD thesis containing genetic data on Hagenia abyssinica and Thomas Geburek for providing raw genetic data on Prunus africana as used in Kadu et al. (2013). The authors also gratefully acknowledge discussion of possible approaches to meta-analysis with Eike Luedeling. Authors IKD, RK, MvZ, LG, AM and RJ were supported by funding to the CGIAR Research Program on Forests, Trees and Agroforestry (FTA), which aims to enhance the management and use of forests, agroforestry and tree genetic resources across the landscape from forests to farms. The CGIAR gratefully acknowledges its funding partners (

Supplementary material

11295_2017_1155_MOESM1_ESM.pdf (288 kb)
Online Resource 1 (PDF 288 kb)
11295_2017_1155_MOESM2_ESM.xlsx (138 kb)
Online Resource 2 (XLSX 137 kb)
11295_2017_1155_MOESM3_ESM.pdf (324 kb)
Online Resource 3 (PDF 324 kb)
11295_2017_1155_MOESM4_ESM.pdf (200 kb)
Online Resource 4 (PDF 199 kb)
11295_2017_1155_MOESM5_ESM.pdf (178 kb)
Online Resource 5 (PDF 178 kb)
11295_2017_1155_MOESM6_ESM.pdf (263 kb)
Online Resource 6 (PDF 263 kb)
11295_2017_1155_MOESM7_ESM.pdf (343 kb)
Online Resource 7 (PDF 343 kb)
11295_2017_1155_MOESM8_ESM.pdf (332 kb)
Online Resource 8 (PDF 332 kb)


  1. ABT (2017) Aichi Biodiversity Targets. Accessed 15 Feb. 2017
  2. AFLRI (2017) African Forest Landscape Restoration Initiative (AFR100). Accessed 8 March 2017
  3. Agufa CAC (2002) Genetic variation in Sclerocarya birrea and Uapaca kirkiana – indigenous fruit trees of the miombo woodlands. Jomo Kenyatta University of Agriculture and Technology, NairobiGoogle Scholar
  4. Alfaro RI, Fady B, Vendramin GG, Dawson IK, Fleming RA, Sáenz-Romero C, Lindig-Cisneros RA, Murdock T, Vinceti B, Navarro CM et al (2014) The role of forest genetic resources in responding to biotic and abiotic factors in the context of anthropogenic climate change. For Ecol Manag 333:76–87CrossRefGoogle Scholar
  5. Allal F, Sanou H, Millet L, Vaillant A, Camus-Kulandaivelu L, Logossa ZA, Lefevre F, Bouvet J-M (2011) Past climate changes explain the phylogeography of Vitellaria paradoxa over Africa. Heredity 107:174–186CrossRefPubMedPubMedCentralGoogle Scholar
  6. Arctander P, Johansen C, Coutellec-Vreto MA (1999) Phylogeography of three closely related African bovids (tribe Alcelaphini). Mol Biol Evol 16:1724–1739CrossRefPubMedGoogle Scholar
  7. Assefa A, Ehrich D, Taberlet P, Nemomissa S, Brochmann C (2007) Pleistocene colonization of afro-alpine ‘sky islands’ by the arctic-alpine Arabis alpina. Heredity 99:133–142CrossRefPubMedGoogle Scholar
  8. Ayele TB (2008) Colonization history, phylogeography and conservation genetics of the gravely endangered tree species Hagenia abyssinica (Bruce) J.F. Gmel from Ethiopia. University of Göttingen, Göttingen, GermanyGoogle Scholar
  9. Ayele TB, Gailing O, Umer M, Finkeldey R (2009) Chloroplast DNA haplotype diversity and postglacial recolonization of Hagenia abyssinica (Bruce) J.F. Gmel. in Ethiopia. Plant Syst Evol 280:175–185Google Scholar
  10. Ayele TB, Gailing O, Umer M, Finkeldey R (2011) Assessment and integration of genetic, morphological and demographic variation in Hagenia abyssinica (Bruce) J.F. Gmel to guide its conservation. J Nat Conserv 19:8–17CrossRefGoogle Scholar
  11. Bonn Challenge (2017) The Bonn Challenge. Accessed 3 March 2017
  12. Bowe C, Haq N (2010) Quantifying the global environmental niche of an underutilised tropical fruit tree (Tamarindus indica) using herbarium records. Agric Ecosyst Environ 139:51–58CrossRefGoogle Scholar
  13. Bozzano M, Jalonen R, Thomas E, Boshier D, Gallo L, Cavers S, Bordács S, Smith P, Loo J (eds) (2014) Genetic considerations in ecosystem restoration using native tree species. Food and Agriculture Organization of the United Nations and Bioversity International, Rome, Italy. Thematic study, State of the World’s Forest Genetic ResourcesGoogle Scholar
  14. van Breugel P, Kindt R, Lillesø J-PB, van Breugel M (2015) Environmental gap analysis to prioritize conservation efforts in eastern Africa. PLoS One 10:e0121444CrossRefPubMedPubMedCentralGoogle Scholar
  15. van Breugel P, Friis I, Demissew S (2016) The transitional semi-evergreen bushland in Ethiopia: characterization and mapping of its distribution using predictive modelling. Appl Veg Sci 19:355–367CrossRefGoogle Scholar
  16. Brink AB, Bodart C, Brodsky L, Defourney P, Ernst C, Donney F, Lupi A, Tuckova K (2014) Anthropogenic pressure in East Africa – monitoring 20 years of land cover changes by means of medium resolution satellite data. Int J Appl Earth Obs Geoinf 28:60–69CrossRefGoogle Scholar
  17. Ćalić I, Bussotti F, Martínez-García PJ, Neale DB (2016) Recent landscape genomics studies in forest trees—what can we believe? Tree Genet Genomes 12:3CrossRefGoogle Scholar
  18. Campbell RK (1986) Mapped genetic variation of Douglas-fir to guide seed transfer in Southwest Oregon. Silvae Genetica 35:85–96Google Scholar
  19. Carnaval AC, Hickerson MJ, Haddad CFB, Rodrigues MT, Moritz C (2009) Stability predicts genetic diversity in the Brazilian Atlantic forest hotspot. Science 323:785–789CrossRefPubMedGoogle Scholar
  20. CEH (2016) Centre for Ecology & Hydrology. Information gateway. Accessed 5 Feb 2016
  21. Dai H (2015) CombinePValue: combine a vector of correlated p-values. Accessed 5 Feb 2016
  22. Dangasuk OG, Gudu S (2000) Allozyme variation in 16 natural populations of Faidherbia albida (Del.) A. Chev. Hereditas 133:133–145Google Scholar
  23. Dangasuk OG, Gudu SO, Okalebo JR (2011) Survival and soil nutrient changes during 5 years of growth of 16 Faidherbia albida provenances in semi-arid Baringo District, Kenya. In: Bationo A, Waswa B, Okeyo JM, Maina F, Kihara J (eds) Innovations as key to the green revolution in Africa. Springer Science+Business Media, Heidelberg, pp 227–234CrossRefGoogle Scholar
  24. Davis AP, Gole TW, Baena S, Moat J (2012) The impact of climate change on indigenous arabica coffee (Coffea arabica): predicting future trends and identifying priorities. PLoS One 7:e47981CrossRefPubMedPubMedCentralGoogle Scholar
  25. Dawson IK, Jamnadass R (2007) Mainstreaming biodiversity around threatened biodiversity hotspots in Africa, building on the innovative Allanblackia business. Supporting synthesis for a proposal to the Global Environment Facility. World Agroforestry Centre, Nairobi, KenyaGoogle Scholar
  26. Dawson IK, Lengkeek A, Weber JC, Jamnadass R (2009) Managing genetic variation in tropical trees: linking knowledge with action in agroforestry ecosystems for improved conservation and enhanced livelihoods. Biodivers Conserv 18:969–986CrossRefGoogle Scholar
  27. Dawson IK, Guariguata MR, Loo J, Weber JC, Lengkeek A, Bush D, Cornelius J, Guarino L, Kindt R, Orwa C et al (2013) What is the relevance of smallholders’ agroforestry systems for conserving tropical tree species and genetic diversity in circa situm, in situ and ex situ settings? A review. Biodivers Conserv 22:301–324CrossRefGoogle Scholar
  28. Derero A (2007) Genetic variation in Cordia africana Lam. in Ethiopia. Cuvillier Verlag, GottingenGoogle Scholar
  29. Derero A, Gailing O, Finkeldey R (2011) Maintenance of genetic diversity in Cordia africana Lam., a declining forest tree species in Ethiopia. Tree Genet Genomes 7:1–9Google Scholar
  30. Derero A, Tesfaye G, Woldemariam Z (2017) Variation in seed traits and seedling vigour of Cordia africana Lam. provenances in Ethiopia. J For Res (in press)Google Scholar
  31. Dhakal LP, Lillesø J-PB, Jha PK, Aryal HL, Kjaer ED (2001) Addressing smallholders’ demand for propagation material of woody species. Part II: elements of an operational programme. Danida Forest Seed Centre, Humlebaek, Denmark and Nepal Ministry of Forest and Soil Conservation, Kathmandu, Nepal. DFSC Case Study No. 3. TISC Document No. 104Google Scholar
  32. Faulkes CG, Verheyen E, Verheyen W, Jarvis JUM, Bennett NC (2004) Phylogeographical patterns of genetic divergence and speciation in African mole-rats (Family: Bathyergidae). Mol Ecol 13:613–629Google Scholar
  33. Feyissa T, Nybom H, Bartish IV, Welander M (2007) Analysis of genetic diversity in the endangered tropical tree species Hagenia abyssinica using ISSR markers. Genet Resour Crop Evol 54:947–958CrossRefGoogle Scholar
  34. Garrity DP (2004) Agroforestry and the achievement of the millennium development goals. Agrofor Syst 61:5–17Google Scholar
  35. GDMG (2017) The geographic distance matrix generator. Site last accessed 5 Feb 2017; calculations undertaken on version 1.2.3 downloaded 4 September 2015
  36. Graham MH (2003) Confronting multicollinearity in ecological multiple regression. Ecology 84:2809–2815CrossRefGoogle Scholar
  37. GRASS Development Team (2015) Geographic resources analysis support system (GRASS GIS). Version 7.0. Open Source Geospatial Foundation, Bonn, GermanyGoogle Scholar
  38. Graudal LOV, Kjær ED, Suangtho V, Saardavut P, Kaosa-ard A (1999) Conservation of genetic resources of teak (Tectona grandis) in Thailand. Danida Forest Seed Centre, Humlebaek, Denmark. Technical Note No.52Google Scholar
  39. Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009CrossRefGoogle Scholar
  40. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9Google Scholar
  41. Harris SA, Fagg CW, Barnes RD (1997) Isozyme variation in Faidherbia albida (Leguminosae, Mimosoideae). Plant Syst Evol 207:119–132CrossRefGoogle Scholar
  42. Henderson JA, Lesher RD, Peter DH, Ringo CD (2011) A landscape model for predicting potential natural vegetation of the Olympic Peninsula USA using boundary equations and newly developed environmental variables. US Department of Agriculture, Forest Service, Portland, USAGoogle Scholar
  43. IPCC (2013) Climate change 2013: the physical science basis. Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UKGoogle Scholar
  44. Kadu CAC, Imbuga M, Jamnadass R, Dawson IK (2006) Genetic management of indigenous fruit trees in southern Africa: a case study of Sclerocarya birrea based on nuclear and chloroplast variation. S Afr J Bot 72:421–427CrossRefGoogle Scholar
  45. Kadu CAC, Schueler S, Konrad H, Muluvi GM, Eyog-Matig O, Muchugi A, Williams VL, Ramamonjisoa L, Kapinga C, Foahom B et al (2011) Phylogeography of the Afromontane Prunus africana reveals a former migration corridor between East and West African highlands. Mol Ecol 20:165–178CrossRefPubMedGoogle Scholar
  46. Kadu CAC, Konrad H, Schueler S, Muluvi GM, Eyog-Matig O, Muchugi A, Williams VL, Ramamonjisoa L, Kapinga C, Foahom B et al (2013) Divergent pattern of nuclear genetic diversity across the range of the Afromontane Prunus africana mirrors variable climate of African highlands. Ann Bot 111:47–60CrossRefPubMedPubMedCentralGoogle Scholar
  47. Kebede M, Ehrich D, Taberlet P, Nemomissa S, Brochmann C (2007) Phylogeography and conservation genetics of a giant lobelia (Lobelia giberroa) in Ethiopian and tropical East African mountains. Mol Ecol 16:1233–1243CrossRefPubMedGoogle Scholar
  48. Kelly BA, Hardy OJ, Bouvet J-M (2004) Temporal and spatial genetic structure in Vitellaria paradoxa (shea tree) in an agroforestry system in southern Mali. Mol Ecol 13:1231–1240CrossRefPubMedGoogle Scholar
  49. Kindt R, Coe R (2005) Tree diversity analysis: a manual and software for common statistical methods for ecological and biodiversity studies. World Agroforestry Centre, NairobiGoogle Scholar
  50. Koskela J, Vinceti B, Dvorak W, Bush D, Dawson IK, Loo J, Kjaer ED, Navarro C, Padolina C, Bordács S et al (2014) Utilization and transfer of forest genetic resources: a global review. For Ecol Manag 333:22–34CrossRefGoogle Scholar
  51. Ledig FT, Kitzmiller JH (1992) Genetic strategies for reforestation in the face of global climate change. For Ecol Manag 50:153–169CrossRefGoogle Scholar
  52. Lengkeek AG, Muchugi Mwangi A, Agufa CAC, Ahenda JO, Dawson IK (2006) Comparing genetic diversity in agroforestry systems with natural forest: a case study of the important timber tree Vitex fischeri in central Kenya. Agrofor Syst 67:293–300CrossRefGoogle Scholar
  53. Lillesø J-PB, Dhakal LP, Jha PK, Aryal HL (2001) Addressing smallholders’ demand for propagation material of woody species. Part I: analysis and strategy proposal. Danida Forest Seed Centre, Humlebaek, Denmark and Nepal Ministry of Forest and Soil Conservation, Kathmandu, Nepal. DFSC Case Study No.3. TISC Document No. 104Google Scholar
  54. Linder HP, de Klerk HM, Born J, Burgess ND, Fjeldsa J, Rahbek C (2012) The partitioning of Africa: statistically defined biogeographical regions in sub-Saharan Africa. J Biogeogr 39:1189–1205CrossRefGoogle Scholar
  55. Loha A, Tigabu M, Teketay D, Lundkvist K, Fries A (2006) Provenance variation in seed morphometric traits, germination, and seedling growth of Cordia africana Lam. New For 32:71–86CrossRefGoogle Scholar
  56. Mihretie Z, Schueler S, Konrad H, Bekele E, Geburek T (2015) Patterns of genetic diversity of Prunus africana in Ethiopia: hot spot but not point of origin for range-wide diversity. Tree Genet Genomes 11:118CrossRefGoogle Scholar
  57. Muchugi AM, Lengkeek AG, Agufa CAC, Muluvi GM, Njagi ENM, Dawson IK (2006) Genetic variation in the threatened medicinal tree Prunus africana in Kenya and Cameroon: implications for current management and evolutionary history. S Afr J Bot 72:498–506CrossRefGoogle Scholar
  58. Muchugi A, Kadu C, Kindt R, Kipruto H, Lemurt S, Olale K, Nyadoi P, Dawson I, Jamnadass R (2008a) Molecular markers for tropical trees, a practical guide to principles and procedures. World Agroforestry Centre, Nairobi, Kenya. ICRAF Technical Manual No. 9Google Scholar
  59. Muchugi A, Muluvi GM, Kindt R, Kadu CAC, Simons AJ, Jamnadass RH (2008b) Genetic structuring of important medicinal species of genus Warburgia as revealed by AFLP analysis. Tree Genet Genomes 4:787–795CrossRefGoogle Scholar
  60. Muchugi A, Kindt R, Muluvi GM, Muge E, Kipruto H, Jamnadass RH (2012) Genetic variation of Kenyan populations of Warburgia ugandensis, an important East African highlands medicinal tree species. J Life Sci 4: 97–105Google Scholar
  61. Muok BO, Matsumura A, Ishii T, Odee DW (2007) Genetic diversity within Sclerocarya birrea populations in Kenya. J Arid Environ 71:1–11CrossRefGoogle Scholar
  62. Nevill PG, Tomlinson S, Elliott CP, Espeland EK, Dixon KW, Merritt DJ (2016) Seed production areas for the global restoration challenge. Ecol Evol 6:7490–7497CrossRefPubMedPubMedCentralGoogle Scholar
  63. Nghitoolwa E, Hall JB, Sinclair FL (2003) Population status and gender imbalance of the marula tree, Sclerocarya birrea subsp. caffra in northern Namibia. Agrofor Syst 59:289–294CrossRefGoogle Scholar
  64. Niang I, Ruppel OC, Abdrabo MA, Essel A, Lennard C, Padgham J, Urquhart P (2014) Africa. In: Barros VR, Field CB, Dokken DJ, Mastrandrea MD, Mach KJ, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC et al. (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom, pp 1199–1265Google Scholar
  65. O’Neill GA, Stoehr M, Jaquish B (2014) Quantifying safe seed transfer distance and impacts of tree breeding on adaptation. For Ecol Manag 328:122–130CrossRefGoogle Scholar
  66. Odee DW, Telford A, Wilson J, Gaye A, Cavers S (2012) Plio-Pleistocene history and phylogeography of Acacia senegal in dry woodlands and savannahs of sub-Saharan tropical Africa: evidence of early colonisation and recent range expansion. Heredity 109:372–382CrossRefPubMedPubMedCentralGoogle Scholar
  67. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P et al. (2016) vegan: community ecology package. Accessed 5 Feb 2016
  68. Omondi SF, Kireger E, Dangasuk OG, Chikamai B, Odee DW, Cavers S, Khasa DP (2010) Genetic diversity and population structure of Acacia senegal (L) Willd. in Kenya. Trop Plant Biol 3:59–70CrossRefGoogle Scholar
  69. Omondi SF, Githae EW, Ochieng JO (2015) Quantitative variation in seeds, seedling growth and biomass among Acacia senegal (L) Willd. provenances in Kenya. Afr J Ecol 53:295–303CrossRefGoogle Scholar
  70. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  71. Petit RJ, Hampe A (2006) Some evolutionary consequences of being a tree. Annu Rev Ecol Evol Syst 37:187–214CrossRefGoogle Scholar
  72. R Core Team (2016) R: a language and environment for statistical computing. Accessed 5 Feb 2016
  73. Roshetko JM, Dawson IK, Urquiola J, Lasco RD, Leimona B, Weber JC, Bozzano M, Lillesø J-PB, Graudal L, Jamnadass R (2017) To what extent are inter- and intra-specific diversity considered in tree environmental service provision? A case study based on carbon sequestration. Climate and Development (in press)Google Scholar
  74. Ruiz Guajardo JC, Schnabel A, Ennos R, Preuss S, Otero-Arnaiz A, Stone G (2010) Landscape genetics of the key African acacia species Senegalia mellifera (Vahl)—the importance of the Kenyan Rift Valley. Mol Ecol 19:5126–5139CrossRefPubMedGoogle Scholar
  75. Russell JR, Kadu CAC, Jamnadass R, Booth A, Cordeiro NJ, Woodhead M, Dawson IK (2009) AFLP and SSR diversity in the African fruit tree Allanblackia: implications for management of a genus newly subject to domestication for the edible oil industry. Tree Genet Genomes 5:517–527CrossRefGoogle Scholar
  76. Russell JR, Hedley PE, Cardle L, Dancey S, Morris J, Booth A, Odee D, Mwaura L, Omondi W, Angaine P et al (2014a) tropiTree: an NGS-based EST-SSR resource for 24 tropical tree species. PLoS One 9:e102502CrossRefPubMedPubMedCentralGoogle Scholar
  77. Russell J, van Zonneveld M, Dawson IK, Booth A, Waugh R, Steffenson B (2014b) Genetic diversity and ecological niche modelling of wild barley: refugia, large-scale post-LGM range expansion and limited mid-future climate threats? PLoS One 9:e86021CrossRefPubMedPubMedCentralGoogle Scholar
  78. Sertse D, Gailing O, Eliades N-G, Finkeldey R (2011) Anthropogenic and natural causes influencing population genetic structure of Juniperus procera Hochst. ex Endl. in the Ethiopian highlands. Genet Resour Crop Evol 58:849–859Google Scholar
  79. Shafer ABA, Wolf JBW (2013) Widespread evidence for incipient ecological speciation: a meta-analysis of isolation-by-ecology. Ecol Lett 16:940–950CrossRefPubMedGoogle Scholar
  80. Stanturf JA, Kant P, Lillesø J-PB, Mansourian S, Kleine M, Madsen P, Graudal L (2015) Forest landscape restoration as a key component of climate change mitigation and adaptation. International Union of Forest Research Organisations, Vienna, Austria. IUFRO World Series No. 34Google Scholar
  81. Takezaki N, Nei M, Tamura K (2010) POPTREE2: software for constructing population trees from allele frequency data and computing other population statistics with windows interface. Mol Biol Evol 27:747–752CrossRefPubMedGoogle Scholar
  82. Thibert-Plante X, Hendry AP (2010) When can ecological speciation be detected with neutral loci? Mol Ecol 19:2301–2314CrossRefPubMedGoogle Scholar
  83. Thomas E, van Zonneveld M, Loo J, Hodgkin T, Galluzzi G, van Etten J (2012) Present spatial diversity patterns of Theobroma cacao L. in the neotropics reflect genetic differentiation in Pleistocene refugia followed by human-influenced dispersal. PLoS One 7:e47676CrossRefPubMedPubMedCentralGoogle Scholar
  84. Thomas E, Jalonen R, Loo J, Boshier D, Gallo L, Cavers S, Bordács S, Smith P, Bozzano M (2014) Genetic considerations in ecosystem restoration using native tree species. For Ecol Manag 333:66–75CrossRefGoogle Scholar
  85. Tüxen R (1956) Die heutige potentielle natürliche Vegetation als Gegenstand der Vegetationskartierung. Angewandte Pflanzensoziologie 13:5–55Google Scholar
  86. van Breugel P, Kindt R, Lillesø JB, Bingham M, Demissew S, Dudley C, Friis I, Gachathi F, Kalema J, Mbago F et al. (2011) VECEA: potential natural vegetation of eastern Africa (Ethiopia, Kenya, Malawi, Rwanda, Tanzania, Uganda and Zambia). Volume 7: projected distributions of potential natural vegetation types and two important agroforestry species (Prunus africana and Warburgia ugandensis) for six possible future climates. Forest & Landscape, University of Copenhagen, Copenhagen, Denmark. Forest & Landscape Working Paper No. 69Google Scholar
  87. vegetationmap4africa (2017) Potential natural vegetation of eastern Africa. Site last accessed 3 March 2017; analysis and map (Fig. 1) based on version 1.1, first published online in 2012 and accessed 15 August 2014 [The current online version, 2.0, has Burundi added to the map, but none of the studies sampled in our meta-analysis included Burundian material, making the addition of limited relevance.]
  88. Viechtbauer W (2010) Conducting meta-analyses in R with the metafor package. J Stat Softw 36:3CrossRefGoogle Scholar
  89. de Villemereuil P, Gaggiotti OE, Mouterde M, Till-Bottraud I (2016) Common garden experiments in the genomic era: new perspectives and opportunities. Heredity 116:249–254CrossRefPubMedGoogle Scholar
  90. Vinceti B, Loo J, Gaisberger H, van Zonneveld MJ, Schueler S, Konrad H, Kadu CAC, Geburek T (2013) Conservation priorities for Prunus africana defined with the aid of spatial analysis of genetic data and climatic variables. PLoS One 8:e59987CrossRefPubMedPubMedCentralGoogle Scholar
  91. Vranckx G, Jacquemyn H, Muys B, Honnay O (2012) Meta-analysis of susceptibility of woody plants to loss of genetic diversity through habitat fragmentation. Conserv Biol 26:228–237CrossRefPubMedGoogle Scholar
  92. Waltari E, Hijmans RJ, Peterson AT, Nyári ÁS, Perkins SL, Guralnick RP (2007) Locating Pleistocene refugia: comparing phylogeographic and ecological niche model predictions. PLoS One 2:e563CrossRefPubMedPubMedCentralGoogle Scholar
  93. Wang IJ, Glor RE, Losos JB (2013) Quantifying the roles of ecology and geography in spatial genetic divergence. Ecol Lett 16:175–182CrossRefPubMedGoogle Scholar
  94. Web of Science (2017) Thomson Reuters Web of Science. Site last accessed 8 March 2017; searches undertaken 8 August 2014
  95. Wiehle M, Prinz K, Kehlenbeck K, Goenster S, Mohamed SA, Finkeldey R, Buerkert A, Gebauer J (2014) The African baobab (Adansonia digitata, Malvaceae): genetic resources in neglected populations of the Nuba Mountains, Sudan. Am J Bot 101:1498–1507CrossRefPubMedGoogle Scholar
  96. WorldClim (2017) WorldClim - global climate data. Site last accessed 5 March 2017; data downloaded 31 Nov 2014
  97. Wright S (1943) Isolation by distance. Genetics 28:114–138PubMedPubMedCentralGoogle Scholar
  98. van Zonneveld M, Jarvis A, Dvorak W, Lema G, Leibing C (2009) Climate change impact predictions on Pinus patula and Pinus tecunumanii populations in Mexico and central America. For Ecol Manag 257:1566–1576CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Ian K. Dawson
    • 1
    • 2
  • Paulo van Breugel
    • 3
  • Richard Coe
    • 1
    • 4
  • Roeland Kindt
    • 1
  • Maarten van Zonneveld
    • 5
  • Jens-Peter B. Lillesø
    • 3
  • Lars Graudal
    • 1
    • 3
  • Alice Muchugi
    • 1
  • Joanne Russell
    • 2
  • Ramni Jamnadass
    • 1
  1. 1.World Agroforestry CentreNairobiKenya
  2. 2.Cell and Molecular SciencesJames Hutton InstituteDundeeUK
  3. 3.Forest, Nature and Biomass, Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenFrederiksberg CDenmark
  4. 4.Statistical Services CentreUniversity of ReadingReadingUK
  5. 5.Bioversity InternationalTurrialbaCosta Rica

Personalised recommendations