Field-based artificial crossings indicate partial compatibility of reciprocal crosses between Pinus sylvestris and Pinus mugo and unexpected chloroplast DNA inheritance

  • Andrej Kormutak
  • Martin Galgoci
  • Peter Manka
  • Martina Koubova
  • Martin Jopcik
  • Denisa Sukenikova
  • Peter Bolecek
  • Dusan Gőmőry
Original Article
Part of the following topical collections:
  1. Hybridization


Crossability relationships between Scots pine (Pinus sylvestris L.) and mountain dwarf pine (Pinus mugo Turra) was studied, using artificial pollination approach. Partial compatibility of the reciprocal crossings of these species was proved experimentally, validating the idea of a spontaneous formation of their hybrid swarms under natural conditions. The hybrids were validated using organellar DNA markers and nuclear DNA microsatellites. Based on the percentage of filled seeds, the interspecific crossings were less efficient than the intraspecific cross-pollinations of P. sylvestris and P. mugo individuals. Both species were found to intercross readily with individuals of their putative hybrid swarm, P. mugo exhibiting a higher hybridological affinity towards putatively hybrid individuals than P. sylvestris. Validation of the hybrids confirmed the paternal inheritance of chloroplast DNA (cpDNA) in the combination P. sylvestris × P. mugo only. Surprisingly, in the reciprocal crossing P. mugo × P. sylvestris, maternal inheritance of cpDNA was revealed. Obtained results offer a new insight into the direction and intensity of gene flow within the hybrid swarms of Scots pine and mountain dwarf pine.


Pinus sylvestris L. Pinus mugo Turra Hybridization DNA 



The authors are grateful to the anonymous reviewers for their valuable and inspiring comments which helped to improve the quality of the manuscript. The contribution of the associated editor in finalizing the manuscript is appreciated either. The study was funded by the COST European Cooperation in Science and Technology, Brussels, project COST Action FP 1403, VEGA Grant Agency, project no. 2/0063/17, and the Operational Programme Research and Development project ITMS 26220220192.

Data archiving statement

No data were provided for public database.

Supplementary material

11295_2017_1152_MOESM1_ESM.docx (20 kb)
Table S1 (DOCX 20 kb)


  1. Amaral Franco J (1986) Pinus L. In: Castroviejo S, Lainz M, López Gonzáles F, Montserrat P, Muñoz Garmendia F, Paiva J, Villar L (eds) Flora Iberica, vol 1. Real Jardin Botánico, Madrid, pp 171–174Google Scholar
  2. Auckland LD, Bui T, Zhou Y, Shepherd M, Williams CG (2002) Conifer microsatellite handbook. Corporate Press, RaleighGoogle Scholar
  3. Bingham RT (1973) Possibilities for improvement of western white pine by inbreeding. USDA For Ser Res Pap INT −144Google Scholar
  4. Brügger CG (1886) Mittheilungen über neue und kritische Pflanzenformen. Erste Serie Jahresber Naturw Ges Graubündes 29:49–178Google Scholar
  5. Businsky R (1999) Taxonomická studie agregátu Pinus mugo a jeho hybridních populací. Acta Průhoniciana 68:123–144Google Scholar
  6. Businsky R, Kirschner J (2006) Nomenclatural notes on the Pinus mugo complex in Central Europe. Phyton 46:129–139Google Scholar
  7. Christ H (1864) Beiträge zur Kenntnis europäischer Pinus-Arten. III. Die Formen der Pinus sylvestris des Ober-Engadins (Ctn. Graubünden). Flora 22:147–160Google Scholar
  8. Christensen KI (1987) Taxonomic revision of the Pinus mugo complex and P. × rhaetica (P. mugo × P. sylvestris) (Pinaceae). Nord J Bot 7:383–408CrossRefGoogle Scholar
  9. Christensen KI, Dar GH (1997) A morphometric analysis of spontaneous and artificial hybrids of Pinus mugo × sylvestris (Pinaceae). Nord J Bot 17:77–86CrossRefGoogle Scholar
  10. Christensen KI, Dar GH (2003) A morphometric study of hybridization between Pinus mugo and P. sylvestris (Pinaceae). In: Mill RR (ed.), Proc. 4th IS on conifer. Acta Hort 615:211–221CrossRefGoogle Scholar
  11. Danusevicius D, Marozas V, Brazaitis G, Petrokaz R, Christensen KI (2012) Spontaneous hybridization between P. mugo and P. sylvestris at the Lithuanian seaside: a morphological survey. Sci World J. doi: 10.1100/2012/172407
  12. Dengler A (1932) Künstliche Bestäubungsversuche an Kiefern. Zeitschr Forst Jagdwesen 64:513–555Google Scholar
  13. Dong J, Wagner DB (1994) Paternally inherited chloroplast polymorphism in Pinus, estimation of diversity and population subdivision, and tests of disequilibrium with a maternally inherited mitochondrial polymorphism. Genetics 136:1187–1194PubMedPubMedCentralGoogle Scholar
  14. Echt CS, Saha S, Krutovsky KV, Wimalanathan K, Erpelding JE, Liang C, Nelson CD (2011) An annotated genetic map of loblolly pine based on microsatellite and cDNA markers. BMC Genet 12:17–18CrossRefPubMedPubMedCentralGoogle Scholar
  15. Fowler DP (1965a) Effects of inbreeding in red pine, Pinus resinosa Ait. II. Pollination studies. Silvae Genet 14:12–23Google Scholar
  16. Fowler DP (1965b) Effects of inbreeding in red pine, Pinus resinosa Ait. IV. Comparison with other northeastern Pinus species. Silvae Genet 14:76–81Google Scholar
  17. Gamache I, Jaramillo-Corea JP, Payette S, Bousquet J (2003) Diverging patterns of mitochondrial and nuclear DNA diversity in subarctic black spruce: imprint of a founder effect associated with postglacial colonization. Mol Ecol 12:891–901CrossRefPubMedGoogle Scholar
  18. Griffin AR, Lindgren D (1985) Effect of inbreeding on production of filled seeds in Pinus radiata—experimental results and a model of gene action. Theor Appl Genet 71:334–343PubMedGoogle Scholar
  19. Hagemann R, Schrőder MB (1989) The cytological basis of the plastid inheritance in angiosperms. Protoplasma 152:57–64CrossRefGoogle Scholar
  20. Hamernik J, Musil I (2007) The Pinus mugo complex—its structuring and general overview of the used nomenclature. J For Sci 53:253–266Google Scholar
  21. Heuertz M, Teufel J, González-Martínez SC, Soto A, Fady B, Alia R, Vendramin GG (2009) Geography determines genetic relationships between species of mountain pine (Pinus mugo complex) in western Europe. J Biogeogr 37:541–556CrossRefGoogle Scholar
  22. Hipkins VD, Krutovskij SH, Strauss SH (1994) Organelle genomes in conifers: structure, evolution, and diversity. For Genet 1:179–189Google Scholar
  23. Jasińska AK, Wachowiak W, Muchewicz E, Boratyńska K, Montserrat JM, Boratyński A (2010) Cryptic hybrids between Pinus uncinata and P. sylvestris. Bot J Linn Soc 163:473–485CrossRefGoogle Scholar
  24. Katsuta M (1966) Further observations on the seed yield in self-pollination of Pinus thunbergii and P. densiflora. Misc Inf Tokyo Univ For 16:35–41Google Scholar
  25. Kormutak A, Vookova B, Salajova T, Wang WR, Szmidt A (2002) Morphometric and genetic analyses of the putative hybrid Pinus sylvestris × Pinus mugo in Habovka. In: Abstracts of IUFRO Symposium of Population and Evolutionary Genetics of Forest Trees, 25–29 August 2002, Stara Lesna, Slovakia, pp 29Google Scholar
  26. Kormutak A, Ostrolucka M, Vookova B, Pretova A, Feckova M (2005) Artificial hybridization of Pinus sylvestris L. and Pinus mugo Turra. Acta Biol Crac Ser Bot 47:129–134Google Scholar
  27. Kormutak A, Demankova B, Gőmőry D (2008) Spontaneous hybridization between Pinus sylvestris L. and P. mugo Turra in Slovakia. Silvae Genet 57:76–82Google Scholar
  28. Kriebel HB (1975) Interspecific incompatibility and inviability problems in forest trees. In: Proc 14th Meeting Can Tree Improv Assoc, August 28–30, 1973, Part 2. Fredericton, New BrunswickGoogle Scholar
  29. Lewandowski A, Wiśniewska M (2006) Short note: Crossability between Pinus uliginosa and its putative parental species Pinus sylvestris and Pinus mugo. Silvae Genet 55:52–54Google Scholar
  30. Liewlaksaneeyanawin C, Ritland CE, El-Kassaby YA, Ritland R (2004) Single-copy, species-transferable microsatellite markers developed from loblloly pine ESTs. Theor Appl Genet 109:361–369CrossRefPubMedGoogle Scholar
  31. Lüdi W (1930) Ist unsere Bergfőhre ein Bastard? Mitth Naturf Ges Bern 1929:29–32Google Scholar
  32. Maier J (1993) Zapfenuntersuchungen bei Pinus mugo Turra. Mitteil Deutsch Dendrol Ges 81:5–12Google Scholar
  33. Manka P, Kormutak A, Galgoci M, Gőmőry D (2015) Genetic status of the putative hybrid swarms of mountain dwarf pine and Scots pine in contact zones of their distribution in Slovakia. Biologia, Section Botany 70:1318–1325Google Scholar
  34. Marcet E (1967) Über den Nachweis spontaner Hybriden von Pinus mugo Turra und Pinus sylvestris L. aufgrund von Nadelmerktmalen. Ber Schweiz Bot Ges 77:314–361Google Scholar
  35. Mergen F, Burley J, Furnival GM (1965) Embryo and seedling development in Picea glauca (Moench) Voss after self-, cross-, and wind-pollination. Silvae Genet 14:188–194Google Scholar
  36. Mirov NT (1967) The genus Pinus. The Ronald Press Company, New YorkGoogle Scholar
  37. Moulalis D, Bassiotis C, Mitsopoulos D (1976) Controlled pollinations among pine species in Greece. Silvae Genet 25:95–107Google Scholar
  38. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight DNA. Nucleic Acid Res 8:4231–4235CrossRefGoogle Scholar
  39. Neale DB, Sederoff RR (1988) Inheritance and evolution of conifer organelle genomes. In: Hanover JW, Keathley DE (eds) Genetic manipulation in woody plants. Plenum, New York, pp 251–264CrossRefGoogle Scholar
  40. Neale DB, Wheeler NC, Allard RW (1986) Paternal inheritance of chloroplast DNA in Douglas-fir. Can J For Res 16:1152–1154CrossRefGoogle Scholar
  41. Neale DB, Marshall KA, Harry DE (1991) Inheritance of chloroplast and mitochondrial DNA in incesce cedar (Calocedrus decurrens Torr.) Can J For Res 21:717–720CrossRefGoogle Scholar
  42. Neet-Sarqueda C (1994) Genetic differentiation of Pinus sylvestris L. and Pinus mugo aggr. populations in Switzerland. Silvae Genet 43:207–215Google Scholar
  43. Neet-Sarqueda C, Plumettaz Clot AC, Bécholey I (1988) Mise en évidence de l’hybridation introgressive entre Pinus sylvestris L. et Pinus uncinata DC. En Valais (Suisse) par deux méthodes multivariées. Bot Helv 98:161–169Google Scholar
  44. Odrzykoski JJ (2002) Research on genetic variability of dwarf mountain pine (Pinus mugo) with the use of biochemical and molecular markers. Wyd Nauk UAM, PoznańGoogle Scholar
  45. Owens JN, Morris SJ (1990) Cytological basis for cytoplasmic inheritance in Pseudotsuga menziesii. I. Polen tube and archegonial development. Am J Bot 77:433–445CrossRefGoogle Scholar
  46. Parducci L, Szmidt A (1999) PCR-RFLP analysis of cpDNA in the genus Abies. Theor Appl Genet 98:802–808CrossRefGoogle Scholar
  47. Primavesi LF, Wu H, Mudd EA, Day A, Jones HD (2017) Visualisation of plastid degradation in sperm cells of wheat pollen. Protoplasma 254:229–237CrossRefPubMedGoogle Scholar
  48. Prus-Głowacki W, Stephan BR (1998) Immunochemical and isoenzymatic characterization of hybrids from controlled crosses between Pinus montana var. rostata and P. sylvestris. For Genet 5:155–163Google Scholar
  49. Reboud X, Zeyl C (1994) Organelle inheritance in plants. Heredity 72:132–140CrossRefGoogle Scholar
  50. Salaj J, Kosova A, Kormutak A, Walles B (1998) Ultrastructural and molecular study of plastid inheritance in Abies alba and some Abies hybrids. Sex Plant Reprod 11:284–291CrossRefGoogle Scholar
  51. Sarvas R (1962) Investigations on the flowering and seed crop of Pinus sylvestris. Comm Inst For Fenniae 53:51–198Google Scholar
  52. SAS (2004) SAS/STAT® 9.1 User’s Guide. SAS Institute Inc., Cary 5121 pp. Accessed 5 Sept 2010Google Scholar
  53. Sorenson FC, Adams WT (1993) Self fertility and natural selfing in three Oregon Cascade populations of lodgepole pine. Dep For Gen Pl Physiol, Swedish Univ Agr Sci, Rep 11:358–374Google Scholar
  54. Staszkiewicz J (1993) Variability of P. mugo × P. sylvestris (Pinaceae) hybrid swarm in the Tisovnica nature reserve (Slovakia). Polish Bot Stud 5:33–41 [In Polish]Google Scholar
  55. Staszkiewicz J (1996) Natural hybrids of Pinus mugo × P. sylvestris (Pinaceae) in Tatra Mts. Frag Flor Geobot Ser Pol 3:23–30 [In Polish]Google Scholar
  56. Szmidt AE, Alden T, Hallgren JE (1987) Paternal inheritance of chloroplast DNA in Larix. Plant Mol Biol 9:59–64CrossRefPubMedGoogle Scholar
  57. Vendramin GG, Ziegenhagen B (1997) Characterisation and inheritance of polymorphic plastid microsatellites in Abies. Genome 40:857–864CrossRefPubMedGoogle Scholar
  58. Wachowiak W, Prus-Głowacki W (2008) Hybridisation processes in sympatric populations of pines Pinus sylvestris L., P. mugo Turra and P. uliginosa Neumann. Pl Syst Evol 271:29–40CrossRefGoogle Scholar
  59. Wachowiak W, Lewandowski A, Prus-Głowacki W (2005a) Reciprocal controlled cross between Pinus sylvestris and P. mugo verified by a species-specific cpDNA marker. J Appl Genet 46:41–43PubMedGoogle Scholar
  60. Wachowiak W, Celiński K, Prus-Głowacki W (2005b) Evidence of natural reciprocal hybridization between Pinus uliginosa and P. sylvestris in the sympatric population of the species. Flora 200:563–568CrossRefGoogle Scholar
  61. Wachowiak W, Stephan BR, Schulze I, Prus-Głowacki W, Ziegenhagen B (2006a) A critical evaluation of reproductive barriers between closely related species using DNA markers—a case study in Pinus. Pl Syst Evol 257:1–8CrossRefGoogle Scholar
  62. Wachowiak W, Odrzykoski J, Myczko Ł, Prus-Głowacki W (2006b) Lack of evidence on hybrid swarm in the sympatric population of Pinus mugo and P. sylvestris. Flora 201:307–316CrossRefGoogle Scholar
  63. Wachowiak W, Palmé AE, Savolainen O (2011) Speciation history of three closely related pines Pinus mugo (T.), P. uliginosa (N.) and P. sylvestris (L.) Mol Ecol 20:1729–1749CrossRefPubMedGoogle Scholar
  64. Wachowiak W, Žukowska WB, Wójkiewicz B, Cavers S, Litkowiec M (2016) Hybridization in contact zone between temperate European pine species. Tree Genet & Genomes 12:48CrossRefGoogle Scholar
  65. Wagner DB, Furnier GR, Saghai-Maroof MA, Williams SM, Dancik BP, Alard RW (1987) Chloroplast DNA polymorphisms in lodgepole and jack pines and their hybrids. Proc Natl Acad Sci U S A 84:2097–2100CrossRefPubMedPubMedCentralGoogle Scholar
  66. Wagner DB, Govindaraju DR, Yeatman CW, Pittel JA (1989) Paternal chloroplast DNA inheritance in a diallele cross of jack pine (Pinus banksiana Lamn.) J Hered 80:483–485CrossRefGoogle Scholar
  67. Ziegenhagen B, Kormutak A, Schauerte M, Scholz F (1995) Restriction site polymorphism in chloroplast DNA of silver fir (Abies alba Mill.) For Genet 2:99–107Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Andrej Kormutak
    • 1
    • 2
  • Martin Galgoci
    • 1
  • Peter Manka
    • 3
  • Martina Koubova
    • 1
  • Martin Jopcik
    • 1
  • Denisa Sukenikova
    • 2
  • Peter Bolecek
    • 2
  • Dusan Gőmőry
    • 4
  1. 1.Plant Science and Biodiversity Center, Slovak Academy of Sciences, Institute of Plant Genetics and BiotechnologyNitraSlovak Republic
  2. 2.Faculty of Natural SciencesConstantine Philosopher UniversityNitraSlovak Republic
  3. 3.Department of State Administration of Nature ProtectionMinistry of EnvironmentBratislavaSlovak Republic
  4. 4.Faculty of ForestryTechnical University in ZvolenZvolenSlovak Republic

Personalised recommendations