Rangewide population differentiation and population substructure in Quercus rubra L.

  • Daniel S. Borkowski
  • Sean M. Hoban
  • Warren Chatwin
  • Jeanne Romero-Severson
Original Article
Part of the following topical collections:
  1. Population structure


Genetic diversity and differentiation in Quercus rubra remains undescribed for most of the native range. Using 10 highly informative gSSR markers, we genotyped 23 populations (980 trees), from across the native range, at local and rangewide spatial scales. We used a hierarchical Bayesian method to generate population-specific F st estimates. The posterior probabilities of 3 spatial and 19 climate factors revealed that latitude and precipitation in the warmest quarter were the only plausible models for population-specific F st estimates. Population-specific F st estimates increased as a linear function of population latitude (R 2 = 0.745, p < 0.0001), the expected effect of postglacial range expansion. Measures of shared ancestry (pairwise local differentiation) among populations sampled at fine spatial scales within locations also increased with the latitude of the location (R 2 = 0.495, p = 0.014), suggesting an influence on differentiation that could not be attributed to postglacial range expansion. As precipitation in the warmest quarter drives radial growth rate in this species, we propose that growth rate influences generation time, which determines the time required to re-establish migration-drift equilibrium among local regenerating stands. Population substructure analysis detected four groups, only one of which was geographically coherent. Most other populations were moderately admixed. Sampling designs that include both fine and coarse spatial scales can begin to disentangle the effect of past range expansions from the effect of recent disturbances. Accounting for population substructure in this species will require additional studies involving functional genes, interspecific interactions, and species distribution modeling.


Quercus rubra Population differentiation Life history Disturbance 



We appreciate the field assistance of Inna Birchenko, Yi Feng, Tim McCleary, Rodney Robichaud, and Paul Goedde at the Isle Royale site and James Schmierer and Oliver Gailing at the Michigan Tech site. We thank Brent Harker and the Notre Dame Genomics Core facility for genotyping assistance and the National Park Service for permitting us to take samples on Isle Royale. This work was supported in part by the National Science Foundation (IOS1025974), and SH was partly supported as a Postdoctoral Fellow at the National Institute for Mathematical and Biological Synthesis (NIMBioS), through NSF Award #DBI-1300426, with support from The University of Tennessee, Knoxville.

Data archiving statement

We will deposit the primary data underlying these analyses (microsatellite genotypes) in the Dryad database, upon acceptance of this paper. Accession numbers for Q. rubra microsatellite marker sequence data are deposited in GenBank and reported in the references given.

Supplementary material

11295_2017_1148_MOESM1_ESM.docx (18 kb)
Text Supplement 1 (DOCX 17 kb)
11295_2017_1148_MOESM2_ESM.pdf (61 kb)
Figure S1 (PDF 60 kb)
11295_2017_1148_MOESM3_ESM.pdf (254 kb)
Figure S2 (PDF 254 kb)
11295_2017_1148_MOESM4_ESM.pdf (113 kb)
Figure S3 (PDF 113 kb)
11295_2017_1148_MOESM5_ESM.pdf (138 kb)
Figure S4 (PDF 137 kb)
11295_2017_1148_MOESM6_ESM.docx (47 kb)
Table S1 (DOCX 46 kb)
11295_2017_1148_MOESM7_ESM.docx (16 kb)
Table S2 (DOCX 15 kb)


  1. Aldrich PR, Michler CH, Sun W, Romero-Severson J (2002) Microsatellite markers for northern red oak (Fagaceae: Quercus rubra). Mol Ecol Notes 2:472–474CrossRefGoogle Scholar
  2. Aldrich PR, Parker GR, Michler CH, Romero-Severson J (2003) Whole-tree silvic identifications and the microsatellite genetic structure of a red oak species complex in an Indiana old-growth forest. Can J For Res 33(11):2228–2237Google Scholar
  3. Alfaro RI et al (2014) The role of forest genetic resources in responding to biotic and abiotic factors in the context of anthropogenic climate change. For Ecol Manag 333:76–87. doi: 10.1016/j.foreco.2014.04.006 CrossRefGoogle Scholar
  4. Bacles CFE, Jump AS (2011) Taking a tree’s perspective on forest fragmentation genetics. Trends Plant Sci 16:13–18. doi: 10.1016/j.tplants.2010.10.002 CrossRefPubMedGoogle Scholar
  5. Bawden T (1997) The northwoods. Back to nature? In: Ostergren RC, Vale TR (eds) Wisconsin land and life. University of Wisconsin Press, Madison, pp 450–469Google Scholar
  6. Birchenko I, Feng Y, Romero-Severson J (2009) Biogeographical distribution of chloroplast diversity in northern red oak (Quercus rubra L.) Am Midl Nat 161:134–145CrossRefGoogle Scholar
  7. Brose PH (2011) A comparison of the effects of different shelterwood harvest methods on the survival and growth of acorn-origin oak seedlings. Can J For Res 41:2359–2374. doi: 10.1139/x11-143 CrossRefGoogle Scholar
  8. Chybicki IJ, Burczyk J (2010) Realized gene flow within mixed stands of Quercus robur L. and Q. petraea (Matt.) L. revealed at the stage of naturally established seedling. Mol Ecol 19:2137–2151. doi: 10.1111/j.1365-294X.2010.04632.x CrossRefPubMedGoogle Scholar
  9. Cline AC, Spurr SH (1942) The virgin upland forest of central New England: a study of old growth stands in the Pisgah mountain section of southwestern New Hampshire Harvard Forest Bulletin no. 21. Harvard Forest, Petersham, MAGoogle Scholar
  10. Craft KJ, Ashley MV (2006) Population differentiation among three species of white oak in northeastern Illinois. Can J For Res 36:206–215CrossRefGoogle Scholar
  11. Craft KJ, Ashley MV (2010) Pollen-mediated gene flow in isolated and continuous stands of bur oak, Quercus macrocarpa (Fagaceae). Am J Bot 97:1999–2006. doi: 10.3732/ajb.0900390 CrossRefPubMedGoogle Scholar
  12. Crow T (1988) Reproductive mode and mechanisms for self-replacement of northern red oak (Quercus rubra)-a review. For Sci 34:19–40Google Scholar
  13. Crow TR (1992) Population dynamics and growth patterns for a cohort of northern red oak (Quercus rubra) seedlings. Oecologia 91:192–200CrossRefPubMedGoogle Scholar
  14. Dey DC, Guyette RP (2000) Sustaining oak ecosystems in the central hardwood region: lessons from the past-continuing the history of disturbance. In: Trans. 65th No. Amer. Wildl. and Natur. Resour. Conf. pp 170–183Google Scholar
  15. Dodd RS, Afzal-Rafii Z (2004) Selection and dispersal in a multispecies oak hybrid zone. Evolution 58:261–269CrossRefPubMedGoogle Scholar
  16. Dow B, Ashley M (1998) High levels of gene flow in bur oak revealed by paternity analysis using microsatellites. J Hered 89:62–70CrossRefGoogle Scholar
  17. Dyer RJ, Westfall RD, Sork VL, Smouse PE (2004) Two-generation analysis of pollen flow across a landscape V: a stepwise approach for extracting factors contributing to pollen structure. Heredity 92:204–211CrossRefPubMedGoogle Scholar
  18. Earl D, von Holdt B (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genet Resour 4:359–361. doi: 10.1007/s12686-011-9548-7 CrossRefGoogle Scholar
  19. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620. doi: 10.1111/j.1365-294X.2005.02553.x CrossRefPubMedGoogle Scholar
  20. Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinformatics Online 1:47–50Google Scholar
  21. Fady B, Cottrell J, Ackzell L, Alía R, Muys B, Prada A, González-Martínez SC (2016) Forests and global change: what can genetics contribute to the major forest management and policy challenges of the twenty-first century? Reg Environ Chang 16:927–939. doi: 10.1007/s10113-015-0843-9 CrossRefGoogle Scholar
  22. Foll M, Gaggiotti O (2006) Identifying the environmental factors that determine the genetic structure of populations. Genetics 174:875–891. doi: 10.1534/genetics.106.059451 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Foster DR, Motzkin G, Slater B (1998) Land-use history as long-term broad-scale disturbance: regional forest dynamics in Central New England. Ecosystems 1:96–119. doi: 10.1007/s100219900008 CrossRefGoogle Scholar
  24. Fralish JS (2003) The central hardwood forest: its boundaries and physiographic provinces. U.S. Dept. of Agriculture, Forest Service, North Central Research Station, St. Paul, MNGoogle Scholar
  25. Gaggiotti OE, Foll M (2010) Quantifying population structure using the F-model. Mol Ecol Resour 10:821–830. doi: 10.1111/j.1755-0998.2010.02873.x CrossRefPubMedGoogle Scholar
  26. Gerber S et al (2014) High rates of gene flow by pollen and seed in oak populations across Europe. PLoS One 9:e85130. doi: 10.1371/journal.pone.0085130 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Goodman SJ, Barton NH, Swanson G, Abernethy K, Pemberton JM (1999) Introgression through rare hybridization: a genetic study of a hybrid zone between red and sika deer (genus Cervus) in Argyll, Scotland. Genetics 152:355–371PubMedPubMedCentralGoogle Scholar
  28. Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3)Google Scholar
  29. Graudal L et al (2014) Global to local genetic diversity indicators of evolutionary potential in tree species within and outside forests. For Ecol Manag 333:35–51. doi: 10.1016/j.foreco.2014.05.002 CrossRefGoogle Scholar
  30. Hanberry BB, Dey DC, He HS (2012) Regime shifts and weakened environmental gradients in open oak and pine ecosystems. PLoS One 7:e41337. doi: 10.1371/journal.pone.0041337 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620CrossRefGoogle Scholar
  32. Hipp AL, Weber JA (2008) Taxonomy of Hill’s Oak (Quercus ellipsoidalis: Fagaceae): evidence from AFLP Data. Syst Bot 33(1):148–158Google Scholar
  33. Hoban SM, McCleary TS, Schlarbaum SE, Romero-Severson J (2009) Geographically extensive hybridization between the forest trees American butternut and Japanese walnut. Biol Lett 5:324–327. doi: 10.1098/rsbl.2009.0031 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Hoban SM et al (2010) Range-wide distribution of genetic diversity in the North American tree Juglans cinerea: a product of range shifts, not ecological marginality or recent population decline. Mol Ecol 19:4876–4891. doi: 10.1111/j.1365-294X.2010.04834.x CrossRefPubMedGoogle Scholar
  35. Jones JJ (2009) Good for a national cemetery: questions of land use and an 1888 botanical expedition across Northern Michigan. Agric Hist 83:174–200CrossRefPubMedGoogle Scholar
  36. Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106CrossRefPubMedGoogle Scholar
  37. Kates J (2001) Planning a wilderness: regenerating the Great Lakes cutover region. University of Minnesota Press, MinneapolisGoogle Scholar
  38. Konar A et al (2016) A genetic map for the Lobatae. International Oaks 27:181–189Google Scholar
  39. Kremer A et al (2012) Long-distance gene flow and adaptation of forest trees to rapid climate change. Ecol Lett 15:378–392. doi: 10.1111/j.1461-0248.2012.01746.x CrossRefPubMedPubMedCentralGoogle Scholar
  40. Laricchia KM, McCleary TS, Hoban SM, Borkowski D, Romero-Severson J (2015) Chloroplast haplotypes suggest preglacial differentiation and separate postglacial migration paths for the threatened North American forest tree Juglans cinerea L. Tree Genet Genomes 11:1–11. doi: 10.1007/s11295-015-0852-3 CrossRefGoogle Scholar
  41. LeBlanc DC, Stahle DW (2015) Radial growth responses of four oak species to climate in eastern and central North America. Can J For Res 45:793–804. doi: 10.1139/cjfr-2015-0020 CrossRefGoogle Scholar
  42. LeBlanc DC, Terrell MA (2011) Comparison of growth–climate relationships between northern red oak and white oak across eastern North America. Can J For Res 41:1936–1947. doi: 10.1139/x11-118 CrossRefGoogle Scholar
  43. Lovejoy P (1923) In the name of development vol 29Google Scholar
  44. Magni CR, Ducousso A, Caron H, Petit RJ, Kremer A (2005) Chloroplast DNA variation of Quercus rubra L. in North America and comparison with other Fagaceae. Mol Ecol 14:513–524CrossRefPubMedGoogle Scholar
  45. Moran EV, Clark JS (2012) Between-site differences in the scale of dispersal and gene flow in red oak. PLoS One 7:e36492. doi: 10.1371/journal.pone.0036492 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Moran EV, Willis J, Clark JS (2012) Genetic evidence for hybridization in red oaks (Quercus sect. Lobatae, Fagaceae). Am J Bot 99:92–100. doi: 10.3732/ajb.1100023 CrossRefPubMedGoogle Scholar
  47. Moran EV, Hartig F, Bell DM (2016) Intraspecific trait variation across scales: implications for understanding global change responses. Glob Chang Biol 22:137–150. doi: 10.1111/gcb.13000 CrossRefPubMedGoogle Scholar
  48. Nowacki GJ, Abrams MD (2015) Is climate an important driver of post-European vegetation change in the Eastern United States? Glob Chang Biol 21:314–334. doi: 10.1111/gcb.12663 CrossRefPubMedGoogle Scholar
  49. Oney B, Reineking B, O’Neill G, Kreyling J (2013) Intraspecific variation buffers projected climate change impacts on Pinus contorta. Ecology and Evolution 3:437–449. doi: 10.1002/ece3.426 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Oswalt SN, Smith WB, Miles PD, Pugh SA (2014) Forest Resources of the United States, 2012: a technical document supporting the Forest Service 2010 update of the RPA AssessmentGoogle Scholar
  51. Peakall ROD, Smouse PE (2006) Genalex 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  52. Peet RK, Loucks OL (1977) A gradient analysis of southern Wisconsin forests. Ecology 58:485–499. doi: 10.2307/1938999 CrossRefGoogle Scholar
  53. Pluess AR et al (2009) Short distance pollen movement in a wind-pollinated tree, Quercus lobata (Fagaceae). For Ecol Manag 258:735–744CrossRefGoogle Scholar
  54. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  55. Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evolution 43:258–275CrossRefPubMedGoogle Scholar
  56. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249CrossRefGoogle Scholar
  57. Sander IL (1990) Quercus rubra L. northern red oak. In: Burns RM, Honkala BH (eds) Silvics of North America, vol 2. Hardwoods. Agric. Handb., vol 654. U.S. Department of Agriculture, Forest Service:, Washington, p 727–733Google Scholar
  58. Schulte LA, Mladenoff DJ, Crow TR, Merrick LC, Cleland DT (2007) Homogenization of northern U.S. Great Lakes forests due to land use. Landsc Ecol 22:1089–1103. doi: 10.1007/s10980-007-9095-5 CrossRefGoogle Scholar
  59. Smouse PE, Dyer RJ, Westfall RD, Sork VL (2001) Two-generation analysis of pollen flow across a landscape. I. Male gamete heterogeneity among females. Evolution 55:260–271CrossRefPubMedGoogle Scholar
  60. Stein JD, Binion D, Acciavatti R (2003) Field guide to native oak species of eastern North America. US Department of Agriculture, Forest Service, Forest Health Technology Enterprise TeamGoogle Scholar
  61. Steinkellner H, Lexer C, Turetschek E, Glössl J (1997) Conservation of (GA)n microsatellite loci between Quercus species. Mol Ecol 6:1189–1194. doi: 10.1046/j.1365-294X.1997.00288.x CrossRefGoogle Scholar
  62. Sullivan AR, Lind JF, McCleary TS, Romero-Severson J, Gailing O (2013) Development and characterization of genomic and gene-based microsatellite markers in North American red oak species. Plant Mol Biol Report 31:231–239CrossRefGoogle Scholar
  63. Van Oosterhout C, Weetman D, Hutchinson WF (2006) Estimation and adjustment of microsatellite null alleles in nonequilibrium populations. Mol Ecol Notes 6:255–256. doi: 10.1111/j.1471-8286.2005.01082.x CrossRefGoogle Scholar
  64. Victory ER, Glaubitz JC, Rhodes OE Jr, Woeste KE (2006) Genetic homogeneity in Juglans nigra (Juglandaceae) at nuclear microsatellites. Am J Bot 93:118–126CrossRefGoogle Scholar
  65. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370PubMedGoogle Scholar
  66. White PB, van de Gevel SL, Grissino-Mayer HD, LaForest LB, Deweese GG (2011) Climatic response of oak species across an environmental gradient in the Southern Appalachian Mountains, USA. Tree-Ring Research 67:27–37. doi: 10.3959/2009-1.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Biological SciencesUniversity of Notre DameNotre DameUSA
  2. 2.The Morton ArboretumLisleUSA

Personalised recommendations