Comparison and confirmation of SNP-bud burst associations in European beech populations in Germany

  • Markus Müller
  • Sarah Seifert
  • Reiner Finkeldey
Original Article
Part of the following topical collections:
  1. Complex Traits


European beech (Fagus sylvatica L.) is one of the most important forest tree species in Central Europe. Climate change scenarios predict an increase in annual mean temperatures that may cause earlier bud burst in spring, potentially leading to an increased late frost-risk. Despite the ecologic and economic importance of beech, knowledge about the molecular basis of bud burst is still scarce in this species. Here, an association analysis was used to detect SNPs that are significantly associated with beech bud burst. A translocation experiment was established with progenies of six different beech populations from three widely separated regions in Northeast, Central, and Southwest Germany. In total, 600 individuals of the translocation experiment were genotyped using a set of 46 SNPs located in bud burst candidate genes. The association analysis revealed seven SNPs significantly associated with bud burst, each SNP explaining only a few percent of the observed phenotypic variation. Since the same SNP set was used in a previous association analysis with European beech, we were able to compare and confirm significant associations between SNPs and bud burst in distinct beech populations growing in different environments.


European beech Bud burst Association Climate change 



We thank the managers of the three Exploratories, Kirsten Reichel-Jung, Swen Renner, Katrin Hartwich, Sonja Gockel, Kerstin Wiesner, and Martin Gorke for their work in maintaining the plot and project infrastructure, Christiane Fischer and Simone Pfeiffer for giving support through the central office, Michael Owonibi for managing the central data base, and Markus Fischer, Eduard Linsenmair, Dominik Hessenmöller, Jens Nieschulze, Daniel Prati, Ingo Schöning, François Buscot, Ernst-Detlef Schulze, Wolfgang W. Weisser, and the late Elisabeth Kalko for their role in setting up the Biodiversity Exploratories project. The work has been funded by the DFG Priority Program 1374 “Infrastructure-Biodiversity-Exploratories” (Fi 569/12-2). Field work permits were issued by the responsible state environmental offices of Baden-Württemberg, Thüringen, and Brandenburg (according to § 72 BbgNatSchG).

We thank everyone who helped us with field and/or lab work, in particular Christine Radler, Alexandra Dolynska, Gerold Dinkel, Marco Winkler, Melanie Schmitt, Laura Cuervo, Natalie Breidenbach, Kristina Schröter, and Rodica Pena.

We greatly appreciate the comments by three anonymous reviewers, who helped to improve the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Data archiving statement

Genotypic (SNP/SSR) and phenotypic data were submitted to the TreeGenes Database ( The accession number is TGDR062.

Supplementary material

11295_2017_1145_MOESM1_ESM.pdf (12 kb)
Online Resource 1 (PDF 11 kb)
11295_2017_1145_MOESM2_ESM.pdf (186 kb)
Online Resource 2 (PDF 186 kb)
11295_2017_1145_MOESM3_ESM.pdf (185 kb)
Online Resource 3 (PDF 185 kb)
11295_2017_1145_MOESM4_ESM.pdf (301 kb)
Online Resource 4 (PDF 300 kb)
11295_2017_1145_MOESM5_ESM.pdf (386 kb)
Online Resource 5 (PDF 386 kb)
11295_2017_1145_MOESM6_ESM.pdf (50 kb)
Online Resource 6 (PDF 49 kb)
11295_2017_1145_MOESM7_ESM.pdf (812 kb)
Online Resource 7 (PDF 812 kb)


  1. Alberto F, Bouffier L, Louvet J-M, Lamy J-B, Delzon S, Kremer A (2011) Adaptive responses for seed and leaf phenology in natural populations of sessile oak along an altitudinal gradient. J Evolution Biol 24:1442–1454. doi: 10.1111/j.1420-9101.2011.02277.x CrossRefGoogle Scholar
  2. Alberto FJ, Derory J, Boury C, Frigerio J-M, Zimmermann NE, Kremer A (2013) Imprints of natural selection along environmental gradients in phenology-related genes of Quercus petraea. Genetics 195:495–512. doi: 10.1534/genetics.113.153783 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Andrews KR, Good JM, Miller MR, Luikart G, Hohenlohe PA (2016) Harnessing the power of RADseq for ecological and evolutionary genomics. Nat Rev Genet 17:81–92. doi: 10.1038/nrg.2015.28 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Asuka Y, Tani N, Tsumura Y, Tomaru N (2004) Development and characterization of microsatellite markers for Fagus crenata Blume. Mol Ecol Notes 4:101–103. doi: 10.1046/j.1471-8286.2003.00583.x CrossRefGoogle Scholar
  5. Augspurger C, Bartlett E (2003) Differences in leaf phenology between juvenile and adult trees in a temperate deciduous forest. Tree Physiol 23:517–525. doi: 10.1093/treephys/23.8.517 CrossRefPubMedGoogle Scholar
  6. Barnett IJ, Lee S, Lin X (2013) Detecting rare variant effects using extreme phenotype sampling in sequencing association studies. Genet Epidemiol 37:142–151. doi: 10.1002/gepi.21699 CrossRefPubMedGoogle Scholar
  7. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J ROY STAT SOC B 57:289–300Google Scholar
  8. Bergelson J, Roux F (2010) Towards identifying genes underlying ecologically relevant traits in Arabidopsis thaliana. Nat Rev Genet 11:867–879. doi: 10.1038/nrg2896 CrossRefPubMedGoogle Scholar
  9. Bertin R (2008) Plant phenology and distribution in relation to recent climate change. The Journal of the Torrey Botanical Society 135:126–146. doi: 10.3159/07-RP-035R.1 CrossRefGoogle Scholar
  10. Bilela S, Dounavi A, Fussi B, Konnert M, Holst J, Mayer H, Rennenberg H, Simon J (2012) Natural regeneration of Fagus sylvatica L. adapts with maturation to warmer and drier microclimatic conditions. Forest Ecol Manag 275:60–67. doi: 10.1016/j.foreco.2012.03.009 CrossRefGoogle Scholar
  11. Bolte A, Czajkowski T, Kompa T (2007) The north-eastern distribution range of European beech—a review. Forestry 80:413–429. doi: 10.1093/forestry/cpm028 CrossRefGoogle Scholar
  12. Bradbury P, Zhang Z, Kroon D et al (2007) TASSEL: software for association mapping of complex traits in diverse samples. Method Biochem Anal 23:2633–2635. doi: 10.1093/bioinformatics/btm308 Google Scholar
  13. Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971PubMedPubMedCentralGoogle Scholar
  14. Colhoun HM, McKeigue PM, Smith GD (2003) Problems of reporting genetic associations with complex outcomes. Lancet 361:865–872. doi: 10.1016/S0140-6736(03)12715-8 CrossRefPubMedGoogle Scholar
  15. Dittmar C, Fricke W, Elling W (2006) Impact of late frost events on radial growth of common beech (Fagus sylvatica L.) in Southern Germany. Eur J Forest Res 125:249–259. doi: 10.1007/s10342-005-0098-y CrossRefGoogle Scholar
  16. Dounavi A, Netzer F, Celepirovic N, Ivanković A, Burger J, Figueroa AG, Schön S, Simon J, Cremer E, Fussi B, Konnert M, Rennenberg H (2016) Genetic and physiological differences of European beech provenances (F. sylvatica L.) exposed to drought stress. Forest Ecol Manag 361:226–236. doi: 10.1016/j.foreco.2015.11.014 CrossRefGoogle Scholar
  17. Durand J, Bodenes C, Chancerel E, Frigerio J-M, Vendramin G, Sebastiani F, Buonamici A, Gailing O, Koelewijn H-P, Villani F, Mattioni C, Cherubini M, Goicoechea PG, Herran A, Ikaran Z, Cabane C, Saneyoshi U, Alberto F, Dumoulin P-Y, Guichoux E, de Daruvar A, Kremer A, Plomion C (2010) A fast and cost-effective approach to develop and map EST-SSR markers: oak as a case study. BMC Genomics 11:570. doi: 10.1186/1471-2164-11-570 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Earl D, vonHoldt B (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resour 4:359–361. doi: 10.1007/s12686-011-9548-7 CrossRefGoogle Scholar
  19. Eckert AJ, Bower AD, Wegrzyn JL, Pande B, Jermstad KD, Krutovsky KV, St. Clair JB, Neale DB (2009) Association genetics of coastal Douglas fir (Pseudotsuga menziesii var. menziesii, Pinaceae). I. Cold hardiness related traits. Genetics 182:1289–1302. doi: 10.1534/genetics.109.102350 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Emond MJ, Louie T, Emerson J, Zhao W, Mathias RA, Knowles MR, Wright FA, Rieder MJ, Tabor HK, Nickerson DA, Barnes KC, National Heart, Lung, and Blood Institute (NHLBI) GO Exome Sequencing Project, Lung GO, Gibson RL, Bamshad MJ (2012) Exome sequencing of extreme phenotypes identifies DCTN4 as a modifier of chronic Pseudomonas aeruginosa infection in cystic fibrosis. Nat Genet 44:886–891. doi: 10.1038/ng.2344 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. doi: 10.1111/j.1365-294X.2005.02553.x CrossRefPubMedGoogle Scholar
  22. Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinformatics Online 1:47–50Google Scholar
  23. Fischer M, Bossdorf O, Gockel S, Hänsel F, Hemp A, Hessenmöller D, Korte G, Nieschulze J, Pfeiffer S, Prati D, Renner S, Schöning I, Schumacher U, Wells K, Buscot F, Kalko EKV, Linsenmair KE, Schulze E-D, Weisser WW (2010) Implementing large-scale and long-term functional biodiversity research: the biodiversity exploratories. Basic Appl Ecol 11:473–485. doi: 10.1016/j.baae.2010.07.009 CrossRefGoogle Scholar
  24. Gömöry D, Paule L (2011) Trade-off between height growth and spring flushing in common beech (Fagus sylvatica L.) Ann Forest Sci 68:975–984. doi: 10.1007/s13595-011-0103-1 CrossRefGoogle Scholar
  25. González-Martínez SC, Wheeler NC, Ersoz E, Nelson CD, Neale DB (2007) Association genetics in Pinus taeda L. I wood property traits Genetics 175:399–409. doi: 10.1534/genetics.106.061127 PubMedGoogle Scholar
  26. Gorroochurn P, Hodge SE, Heiman GA, Durner M, Greenberg DA (2007) Non-replication of association studies: “pseudo-failures” to replicate? Genet Med 9:325–331. doi: 10.1097/GIM.0b013e3180676d79 CrossRefPubMedGoogle Scholar
  27. Griffiths S, Dunford R, Coupland G, Laurie D (2003) The evolution of CONSTANS-like gene families in barley, rice, and Arabidopsis. Plant Physiol 131:1855–1867. doi: 10.1104/pp.102.016188 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Gu L, Hanson PJ, Post WM, Kaiser DP, Yang B, Nemani R, Pallardy SG, Meyers T (2008) The 2007 Eastern US Spring Freeze: increased cold damage in a warming world? Bioscience 58:253–262. doi: 10.1641/B580311 CrossRefGoogle Scholar
  29. Hanewinkel M, Cullmann DA, Schelhaas M-J, Nabuurs G-J, Zimmermann NE (2013) Climate change may cause severe loss in the economic value of European forest land. Nature Clim Change 3:203–207. doi: 10.1038/NCLIMATE1687 CrossRefGoogle Scholar
  30. Heuertz M, De Paoli E, Källman T, Larsson H, Jurman I, Morgante M, Lascoux M, Gyllenstrand N (2006) Multilocus patterns of nucleotide diversity, linkage disequilibrium and demographic history of Norway spruce [Picea abies (L.) Karst]. Genetics 174:2095–2105. doi: 10.1534/genetics.106.065102 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Horvath D (2009) Common mechanisms regulate flowering and dormancy. Plant Sci 177:523–531. doi: 10.1016/j.plantsci.2009.09.002 CrossRefGoogle Scholar
  32. Howe GT, Saruul P, Davis J, Chen THH (2000) Quantitative genetics of bud phenology, frost damage, and winter survival in an F2 family of hybrid poplars. Theor Appl Genet 101:632–642. doi: 10.1007/s001220051525 CrossRefGoogle Scholar
  33. Ingvarsson PK (2005) Nucleotide polymorphism and linkage disequilibrium within and among natural populations of European aspen (Populus tremula L., Salicaceae). Genetics 169:945–953. doi: 10.1534/genetics.104.034959 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Ingvarsson PK, Garcia MV, Luquez V, Hall D, Jansson S (2008) Nucleotide polymorphism and phenotypic associations within and around the phytochrome B2 locus in European aspen (Populus tremula, Salicaceae). Genetics 178:2217–2226. doi: 10.1534/genetics.107.082354 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Khanduri V, Sharma C, Singh S (2008) The effects of climate change on plant phenology. Environment 28:143–147. doi: 10.1007/s10669-007-9153-1 Google Scholar
  36. Knapp HD, Emde F-A, Engels B, Lehrke S, Hendrischke O, Klein M, Kluttig H, Krug A, Schäfer H-J, Scherfose V, Schröder E, Schweppe-Kraft B (2008) Naturerbe Buchenwälder: Situationsanalyse und Handlungserfordernisse. Bonn, Vilm: Bundesamt für NaturschutzGoogle Scholar
  37. Konnert M, Behm A (1999) Genetische Strukturen einer Saatgutpartie – Einflussfaktoren und Einflussmöglichkeiten. Beitr Forstwirtsch u Landsch ökol 33:152–156Google Scholar
  38. Körner C, Basler D (2010) Phenology under global warming. Science 327:1461–1462. doi: 10.1126/science.1186473 CrossRefPubMedGoogle Scholar
  39. Kreyling J, Thiel D, Nagy L, Jentsch A, Huber G, Konnert M, Beierkuhnlein C (2012) Late frost sensitivity of juvenile Fagus sylvatica L. differs between southern Germany and Bulgaria and depends on preceding air temperature. Eur J For Res 131:717–725. doi: 10.1007/s10342-011-0544-y CrossRefGoogle Scholar
  40. Lalagüe H, Csilléry K, Oddou-Muratorio S, Safrana J, de Quattro C, Fady B, González-Martínez SC, Vendramin GG (2014) Nucleotide diversity and linkage disequilibrium at 58 stress response and phenology candidate genes in a European beech (Fagus sylvatica L.) population from southeastern France. Tree Genet Genomes 10:15–26. doi: 10.1007/s11295-013-0658-0 CrossRefGoogle Scholar
  41. Lee S, Abecasis GR, Boehnke M, Lin X (2014) Rare-variant association analysis: study designs and statistical tests. Am J Hum Genet 95:5–23. doi: 10.1016/j.ajhg.2014.06.009 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Lesur I, Bechade A, Lalanne C, Klopp C, Noirot C, Leplé J-C, Kremer A, Plomion C, Le Provost G (2015) A unigene set for European beech (Fagus sylvatica L.) and its use to decipher the molecular mechanisms involved in dormancy regulation. Mol Ecol Resour 15:1192–1204. doi: 10.1111/1755-0998.12373 CrossRefPubMedGoogle Scholar
  43. Leuschner C, Meier I, Hertel D (2006) On the niche breadth of Fagus sylvatica: soil nutrient status in 50 Central European beech stands on a broad range of bedrock types. Ann Forest Sci 63:355–368. doi: 10.1051/forest:2006016 CrossRefGoogle Scholar
  44. Liesebach M (2012) Wachstum und phänotypische Variation von sechs Herkünften der Rot-Buche (Fagus sylvatica L.) an einem Standort in Schleswig-Holstein. Appl Agric Forestry Res 62:179–192Google Scholar
  45. Lind-Riehl J, Sullivan A, Gailing O (2014) Evidence for selection on a CONSTANS-like gene between two red oak species. Ann Bot-london 113:967–975. doi: 10.1093/aob/mcu019 CrossRefGoogle Scholar
  46. Long AD, Langley CH (1999) The power of association studies to detect the contribution of candidate genetic loci to variation in complex traits. Genome Res 9:720–731PubMedPubMedCentralGoogle Scholar
  47. Lotterhos KE, Whitlock MC (2015) The relative power of genome scans to detect local adaptation depends on sampling design and statistical method. Mol Ecol 24:1031–1047. doi: 10.1111/mec.13100 CrossRefPubMedGoogle Scholar
  48. Lowry DB, Hoban S, Kelley JL, Lotterhos KE, Reed LK, Antolin MF, Storfer A (2016) Breaking RAD: an evaluation of the utility of restriction site-associated DNA sequencing for genome scans of adaptation. Mol Ecol Resour. doi: 10.1111/1755-0998.12635 PubMedCentralGoogle Scholar
  49. Magri D, Vendramin GG, Comps B, Dupanloup I, Geburek T, Gömöry D, Latałowa M, Litt T, Paule L, Roure JM, Tantau I, van der Knaap WO, Petit RJ, de Beaulieu J-L (2006) A new scenario for the Quaternary history of European beech populations: palaeobotanical evidence and genetic consequences. New Phytol 171:199–221. doi: 10.1111/j.1469-8137.2006.01740.x CrossRefPubMedGoogle Scholar
  50. McKinney GJ, Larson WA, Seeb LW, Seeb JE (2017) RADseq provides unprecedented insights into molecular ecology and evolutionary genetics: comment on Breaking RAD by Lowry et al. (2016). Mol Ecol Resour. doi:  10.1111/1755-0998.12649
  51. Meier ES, Edwards TC Jr, Kienast F, Dobbertin M, Zimmermann NE (2011) Co-occurrence patterns of trees along macro-climatic gradients and their potential influence on the present and future distribution of Fagus sylvatica L. J Biogeogr 38:371–382. doi: 10.1111/j.1365-2699.2010.02405.x CrossRefGoogle Scholar
  52. Menzel A (2000) Trends in phenological phases in Europe between 1951 and 1996. Int J Biometeorol 44:76–81. doi: 10.1007/s004840000054 CrossRefPubMedGoogle Scholar
  53. Menzel A, Fabian P (1999) Growing season extended in Europe. Nature 397:659–659. doi: 10.1038/17709 CrossRefGoogle Scholar
  54. Mitchell-Olds T (2010) Complex-trait analysis in plants. Genome Biol 11:113. doi: 10.1186/gb-2010-11-4-113 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Müller M, Seifert S, Finkeldey R (2015a) Identification of SNPs in candidate genes potentially involved in bud burst in European beech (Fagus sylvatica L.) Silvae Genet 64:1–20CrossRefGoogle Scholar
  56. Müller M, Seifert S, Finkeldey R (2015b) A candidate gene-based association study reveals SNPs significantly associated with bud burst in European beech (Fagus sylvatica L.). Tree Genet Genomes 11:116. doi:  10.1007/s11295-015-0943-1
  57. Nei M (1977) F-statistics and analysis of gene diversity in subdivided populations. Ann Hum Genet 41:225–233CrossRefPubMedGoogle Scholar
  58. Oddou-Muratorio S, Klein EK, Vendramin GG, Fady B (2011) Spatial vs. temporal effects on demographic and genetic structures: the roles of dispersal, masting and differential mortality on patterns of recruitment in Fagus sylvatica. Mol Ecol 20:1997–2010. doi: 10.1111/j.1365-294X.2011.05039.x CrossRefPubMedGoogle Scholar
  59. Pastorelli R, Schmulders MJM, Van’t Westende WPC, Vosman B, Giannini R, Vettori C, Vendramin GG (2003) Characterization of microsatellite markers in Fagus sylvatica L. and Fagus orientalis Lipsky. Mol Ecol Notes 3:76–78. doi: 10.1046/j.1471-8286.2003.00355.x CrossRefGoogle Scholar
  60. Peakall R, Smouse P (2006) Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295. doi: 10.1111/j.1471-8286.2005.01155.x CrossRefGoogle Scholar
  61. Peakall R, Smouse P (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Method Biochem Anal 28:2537–2539. doi: 10.1093/bioinformatics/bts460 Google Scholar
  62. Piotti A, Leonardi S, Buiteveld J, Geburek T, Gerber S, Kramer K, Vettori C, Vendramin GG (2012) Comparison of pollen gene flow among four European beech (Fagus sylvatica L.) populations characterized by different management regimes. Heredity 108:322–331. doi: 10.1038/hdy.2011.77 CrossRefPubMedGoogle Scholar
  63. Pluess A, Weber P (2012) Drought-adaptation potential in Fagus sylvatica: linking moisture availability with genetic diversity and dendrochronology. PLoS One 7:e33636. doi: 10.1371/journal.pone.0033636 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Pritchard J, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  65. Prunier J, Pelgas B, Gagnon F, Desponts M, Isabel N, Beaulieu J, Bousquet J (2013) The genomic architecture and association genetics of adaptive characters using a candidate SNP approach in boreal black spruce. BMC Genomics 14:368. doi: 10.1186/1471-2164-14-368 CrossRefPubMedPubMedCentralGoogle Scholar
  66. R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL
  67. Rajendra KC, Seifert S, Prinz K, Gailing O, Finkeldey R (2014) Subtle human impacts on neutral genetic diversity and spatial patterns of genetic variation in European beech (Fagus sylvatica). Forest Ecol Manag 319:138–149. doi: 10.1016/j.foreco.2014.02.003 CrossRefGoogle Scholar
  68. Rellstab C, Fischer MC, Zoller S, Graf R, Tedder A, Shimizu KK, Widmer A, Holderegger R, Gugerli F (2017) Local adaptation (mostly) remains local: reassessing environmental associations of climate-related candidate SNPs in Arabidopsis halleri. Heredity 118:193–201. doi: 10.1038/hdy.2016.82 CrossRefPubMedGoogle Scholar
  69. Rigby J, Porporato A (2008) Spring frost risk in a changing climate. Geophys Res Lett 35:L12703. doi: 10.1029/2008GL033955 Google Scholar
  70. Rousset F (2008) genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106. doi: 10.1111/j.1471-8286.2007.01931.x CrossRefPubMedGoogle Scholar
  71. Schüler S, Liesebach M (2015) Latitudinal population transfer reduces temperature sum requirements for bud burst of European beech. Plant Ecol 216:111–122. doi: 10.1007/s11258-014-0420-1 CrossRefGoogle Scholar
  72. Schüler S, Liesebach M, von Wühlisch G (2012) Genetische variation und Plastizität des Blattaustriebs von Herkünften der Rot-Buche. Appl Agric Forestry Res 62:211–220Google Scholar
  73. Seifert S, Vornam B, Finkeldey R (2012) A set of 17 single nucleotide polymorphism (SNP) markers for European beech (Fagus sylvatica L.) Conservation Genetics Resour 4:1045–1047. doi: 10.1007/s12686-012-9703-9 CrossRefGoogle Scholar
  74. Višnjić Ć, Dohrenbusch A (2004) Frostresistenz und Phänologie europäischer Buchenprovenienzen (Fagus sylvatica L.) Allgemeine Forst- und Jagdzeitung 175:101–108Google Scholar
  75. Vitasse Y (2013) Ontogenic changes rather than difference in temperature cause understory trees to leaf out earlier. New Phytol 198:149–155. doi: 10.1111/nph.12130 CrossRefPubMedGoogle Scholar
  76. Vitasse Y, Basler D (2013) What role for photoperiod in the bud burst phenology of European beech. Eur J Forest Res 132:1–8. doi: 10.1007/s10342-012-0661-2 CrossRefGoogle Scholar
  77. Vitasse Y, Delzon S, Bresson CC, Michalet R, Kremer A (2009) Altitudinal differentiation in growth and phenology among populations of temperate-zone tree species growing in a common garden. Can J For Res 39:1259–1269. doi: 10.1139/X09-054 CrossRefGoogle Scholar
  78. Vornam B, Decarli N, Gailing O (2004) Spatial distribution of genetic variation in a natural beech stand (Fagus sylvatica L.) based on microsatellite markers. Conserv Genet 5:561–570. doi: 10.1023/ CrossRefGoogle Scholar
  79. von Wühlisch G, Krusche D, Muhs H-J (1995a) Variation in temperature sum requirement for flushing of beech provenances. Silvae Genet 44:343–346Google Scholar
  80. von Wühlisch G, Duval H, Jacques D, Muhs H-J (1995b) Stability of differences in flushing between beech provenances in different years and at different sites. In: Madsen SF (ed) Genetics and silviculture of beech: proceedings from the 5th beech symposium of the IUFRO project group P1.10–00, 19.-24. September 1994, Morgenstrup, Denmark. Danish Forest and Landscape Research Institute, Hørsholm, pp 83–89Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Forest Genetics and Forest Tree BreedingBüsgen Institute, Faculty for Forest Sciences and Forest Ecology, Georg-August University GöttingenGöttingenGermany
  2. 2.University of KasselKasselGermany

Personalised recommendations