Quantitative trait loci controlling vegetative propagation traits mapped in European pear (Pyrus communis L.)

  • Mareike Knäbel
  • Adam P. Friend
  • John W. Palmer
  • Robert Diack
  • Susan E. Gardiner
  • Stuart Tustin
  • Robert Schaffer
  • Toshi Foster
  • David Chagné
Original Article
  • 263 Downloads
Part of the following topical collections:
  1. Complex Traits

Abstract

The ease of vegetative propagation by hardwood cuttings is a critical trait for consideration by breeders of woody perennial rootstocks. This is especially so for Pyrus, because most Pyrus rootstock are known to be difficult to propagate. This report presents progress on the identification of loci controlling rooting of hardwood cuttings in European pear (Pyrus communis L.). Quantitative trait loci (QTLs) controlling the development of adventitious roots on hardwood cuttings were identified in both parents of a mapping population developed by crossing “Old Home” and “Louise Bonne de Jersey,” with the goal of investigating the genetic control of several rootstock related traits, which would be useful for rootstock breeding. A QTL for root development was identified on chromosome 7, co-located in both parents and exhibiting male and female additive and dominance effects. These results will assist in developing genetic markers that can be utilized by rootstock breeders for marker-assisted selection for this complex trait.

Keywords

European pear Rooting QTL Propagation 

Notes

Acknowledgements

This work was funded by the New Zealand Ministry of Business Innovation and Employment grant “Pipfruit: a Juicy Future” [contract number: 27744] and “Future Orchard Planting Systems” [contract number: 30467]. We want to thank Lester Brewer for making the cross, Sara Montanari for providing the reference map, Shona Seymour and Angela Shirtliff for help with phenotyping, and Robert Lamberts for providing the photographs of the cuttings.

Data archiving statement

The genetic map data used in this study can be found in Montanari et al. (2013).

SNP accessions are available in dbSNP (http://www.ncbi.nlm.nih.gov/projects/SNP/) under accessions ss527787751 to ss527789916. Phenotypic data is available on request.

References

  1. Bates D, Maechler M, Bolker B (2012) lme4: Linear mixed-effects models using S4 classes. R package version 1.1-7Google Scholar
  2. Bell R, Zimmermann R (1990) Combining ability analysis of juvenile period in pear. Hort Sci 25(11):1425–1427Google Scholar
  3. Butler E, Gallagher T (1999) Isolation and characterization of a cDNA encoding a novel 2-oxoacid-dependent dioxygenase which is up-regulated during adventitious root formation in apple (Malus domestica ‘Jork 9’) stem discs. J Exp Bot 50(333):551–552Google Scholar
  4. Cameron R, Thomson G (1969) The vegetative propagation of Pinus radiata: root initiation in cuttings. Bot Gaz 130(4):242–251CrossRefGoogle Scholar
  5. Chagné D, Crowhurst R, Pindo M, Thrimawithana A, Deng C, Ireland H, Fiers M, Dzierzon H, Cestaro A, Fontana P, Bianco L, Lu A, Storey R, Knäbel M, Saeed M, Montanari S, Kim Y, Nicolini D, Larger S, Stefani E, Allan A, Bowen J, Harvey I, Johnston J, Malnoy M, Troggio M, Perchepied L, Sawyer G, Wiedow C, Won K, Viola R, Hellens R, Brewer L, Bus V, Schaffer R, Gardiner S, Velasco R (2014) The draft genome sequence of European pear (Pyrus communis L. ‘Bartlett’). PLoS One 9(4):e92644. doi: 10.1371/journal.pone.0092644 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Collard B, Jahufer M, Brouwer J, Pang E (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142(1):169–196CrossRefGoogle Scholar
  7. De Klerk G-J, Keppel M, Brugge J, Meekes H (1995) Timing of the phases in adventitous root formation in apple microcuttings. J Exp Bot 46(8):965–972CrossRefGoogle Scholar
  8. De Klerk G-J, von der Krieken W, De Jong J (1999) The formation of adventitious roots: new concepts, new posibilities. In Vitro Cell Dev Biol 35:189–199CrossRefGoogle Scholar
  9. Diack R, Friend A, Knäbel M, Palmer J, Tustin D (2016) Assessing ease of propagation of European pear cultivars and a Pyrus communis rootstock segregating population. XI Orchard Systems 2016, Bologna, ItalyGoogle Scholar
  10. Diaz-Sala C, Hutchison K, Goldfarb B, Greenwood M (1996) Maturation-related loss in rooting competence by loblolly pine stem cuttings: the role of auxin transport, metabolism and tissue sensitivity. Physiol Plant 97:481–490CrossRefGoogle Scholar
  11. Fett-Neto A, Fett J, Vieira Goulart L, Pasquali G, Termignoni R, Ferreira A (2001) Distinct effects of auxin and light on adventitious root development in Eucalyptus saligna and Eucalyptus globulus. Tree Physiol 21:457–464CrossRefPubMedGoogle Scholar
  12. Girouard R (1967) Initiation and development of adventitious roots in stem cuttings of Hedera helix. Can J Bot 45:289–302Google Scholar
  13. Guitton B, Kelner J, Velasco R, Gardiner S, Chagné D, Costes E (2012) Genetic control of biennial bearing in apple. J Exp Bot 63(1):131–149. doi: 10.1093/jxb/err261 CrossRefPubMedGoogle Scholar
  14. Han K-H, Bradshaw H, Gordon M (1994) Adventitious root and shoot regeneration in vitro is under major gene control in an F2, family of hybrid poplar (Populus trichocarpa × P. deltozdes). For Genet 1:139–146Google Scholar
  15. Hancock J, Luby J, Brown S, Lobos G (2008) Pears. In: Hancock J (ed) Temperate fruit crop breeding. Springer Science and Business, USA, pp 1–38CrossRefGoogle Scholar
  16. Hartmann H, Hansen C (1958) Rooting pear, plum rootstocks. Calif Agric 12(10):14–15Google Scholar
  17. Hartmann H, Kester D, Davies FJ, Geneve R (2011) Hartmann & Kester’s plant propagation: principles and practices. Prentice Hall, New JerseyGoogle Scholar
  18. Itai A (2007) Pear. In: Kole C (ed) Genome mapping and molecular breeding in plants, fruits and nuts, vol 4. Springer, HeidelbergGoogle Scholar
  19. Jacob H (2002) New pear rootstocks from Geisenheim, Germany. Acta Hortic 596:337–344CrossRefGoogle Scholar
  20. Jayawickrama K, Jett J, Mckeand S (1991) Rootstock effects in grafted conifers: a review. New For 5:157–173CrossRefGoogle Scholar
  21. Jia H, Yi D, Yu J, Xue S, Xiang Y, Zhang C, Zhang Z, Zhang L, Ma Z (2007) Mapping QTLs for tissue culture response of mature wheat embryos. Mol Cells 23(3):323–330PubMedGoogle Scholar
  22. Knäbel M, Friend A, Palmer J, Diack R, Wiedow C, Alspach P, Deng C, Gardiner S, Tustin D, Schaffer R, Foster T, Chagné D (2015) Genetic control of pear rootstock-induced dwarfing and precocity is linked to a chromosomal region syntenic to the apple Dw1 loci. BMC Plant Biol 15(1):230CrossRefPubMedPubMedCentralGoogle Scholar
  23. Legue V, Rigal A, Bhalerao R (2014) Adventitious root formation in tree species: involvement of transcription factors. Physiol Plant 151(2):192–198. doi: 10.1111/ppl.12197 CrossRefPubMedGoogle Scholar
  24. Li T-Y, Wang Y, Zhang X-Z, Han Z-H (2012) Isolation and characterization of ARRO-1 genes from apple rootstocks in response to auxin treatment. Plant Mol Biol Report 30(6):1408–1414. doi: 10.1007/s11105-012-0457-z CrossRefGoogle Scholar
  25. Lockard R, Schneider G (1981) Stock and scion growth relationships and the dwarfing mechanism in apple. Hortic Rev 3:315–375Google Scholar
  26. Mano Y, Komatsuda T (2002) Identification of QTLs controlling tissue-culture traits in barley (Hordeum vulgare L.) Theor Appl Genet 105(5):708–715. doi: 10.1007/s00122-002-0992-3 CrossRefPubMedGoogle Scholar
  27. Mano Y, Takahashi H, Sato K, Takeda K (1996) Mapping genes for callus growth and shoot regenetartion in barley (Hordeum vulgare L.) Breed Sci 46:137–142Google Scholar
  28. Marques C, Carocha V, Pereira de Sá A, Oliveira M, Pires A, Sederoff R, Borralho N (2005) Verification of QTL linked markers for propagation traits in Eucalyptus. Tree Genet Genomes 1(3):103–108. doi: 10.1007/s11295-005-0013-1 CrossRefGoogle Scholar
  29. Marques C, Vasquez-Kool J, Carocha V, Ferreira J, O’Malley D, Liu B, Sederoff R (1999) Genetic dissection of vegetative propagation traits in Eucalyptus tereticornis and E. globulus. Theor Appl Genet 99:936–946CrossRefGoogle Scholar
  30. Montanari S, Perchepied L, Renault D, Frijters L, Velasco R, Horner M, Gardiner SE, Chagné D, Bus VGM, Durel C-E, Malnoy M (2016) A QTL detected in an interspecific pear population confers stable fire blight resistance across different environments and genetic backgrounds. Mol Breed 36(4):47. doi: 10.1007/s11032-016-0473-z CrossRefGoogle Scholar
  31. Montanari S, Saeed M, Knäbel M, Kim Y, Troggio M, Malnoy M, Velasco R, Fontana P, Won K, Durel C-E, Perchepied L, Schaffer R, Wiedow C, Bus V, Brewer L, Gardiner S, Crowhurst R, Chagné D (2013) Identification of Pyrus single nucleotide polymorphisms (SNPs) and evaluation for genetic mapping in European pear and inter-specific Pyrus hybrids. PLoS One 8(10):e77022. doi: 10.1371/journal.pone.0077022 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Moriya S, Iwanami H, Haji T, Okada K, Yamada M, Yamamoto T, Abe K (2015) Identification and genetic characterization of a quantitative trait locus for adventitious rooting from apple hardwood cuttings. Tree Genet Genomes 11(3). doi: 10.1007/s11295-015-0883-9
  33. Okushima Y, Fukaki H, Onoda M, Theologis A, Tasaka M (2007) ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. Plant Cell 19(1):118–130. doi: 10.1105/tpc.106.047761 CrossRefPubMedPubMedCentralGoogle Scholar
  34. R Core Development Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  35. Scotti-Saintagne C, Bertocchi E, Barreneche T, Kremer A, Plomion C (2005) Quantitative trait loci mapping for vegetative propagation in pedunculate oak. Ann For Sci 62(4):369–374. doi: 10.1051/forest:2005032 CrossRefGoogle Scholar
  36. Shepherd M, Huang S, Eggler P, Cross M, Dale G, Dieters M, Henry R (2006) Congruence in QTL for adventitious rooting in Pinus elliottii × Pinus caribaea hybrids resolves between and within-species effects. Mol Breed 18(1):11–28. doi: 10.1007/s11032-006-9006-5 CrossRefGoogle Scholar
  37. Shepherd M, Kasem S, Lee D, Henry R (2008) Mapping species differences for adventitious rooting in a Corymbia torelliana × Corymbia citriodora subspecies variegata hybrid. Tree Genet Genomes 4(4):715–725. doi: 10.1007/s11295-008-0145-1 CrossRefGoogle Scholar
  38. Siviero A, Cristofani M, Machado M (2003) QTL mapping associated with rooting stem cuttings from Citrus sunki vs. Poncirus trifoliata hybrids. Crop Breed Appl Biotechnol 3:83–88CrossRefGoogle Scholar
  39. Smolka A, Welander M, Olsson P, Holefors A, Zhu L-H (2009) Involvement of the ARRO-1 gene in adventitious root formation in apple. Plant Sci 177(6):710–715. doi: 10.1016/j.plantsci.2009.09.009 CrossRefGoogle Scholar
  40. Sorin C, Bussell J, Camus I, Ljung K, Kowalczyk M, Geiss G, McKhann H, Garcion C, Vaucheret H, Sandberg G, Bellini C (2005) Auxin and light control of adventitious rooting in Arabidopsis require ARGONAUTE1. Plant Cell 17(5):1343–1359. doi: 10.1105/tpc.105.031625 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Sorin C, Negroni L, Balliau T, Corti H, Jacquemot M-P, Davanture M, Sandberg G, Zivy M, Bellini C (2006) Proteomic analysis of different mutant genotypes of Arabidopsis led to the identification of 11 proteins correlating with adventitious root development. Plant Physiol 140(1):349–364. doi: 10.1104/pp.105.067868 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Thumma B, Baltunis B, Bell J, Emebiri L, Moran G, Southerton S (2010) Quantitative trait locus (QTL) analysis of growth and vegetative propagation traits in Eucalyptus nitens full-sib families. Tree Genet Genomes 6(6):877–889. doi: 10.1007/s11295-010-0298-6 CrossRefGoogle Scholar
  43. Van Huyssteen P (1992) Guidelines for successful propagation of pear rootstocks from hardwood cuttings. FFTRI Information Bull 617:1–6Google Scholar
  44. van Ooijen J (2004) MapQTL® 5, software for the mapping of quantitative trait loci in experimental populations. Kyazma, B.V, WageningenGoogle Scholar
  45. Webster A (1995) Temperate fruit tree rootstock propagation. N Z J Crop Hortic Sci 23(4):355–372. doi: 10.1080/01140671.1995.9513912 CrossRefGoogle Scholar
  46. Webster A (1998) A brief review of pear rootstock development. Acta Hortic 475:135–141CrossRefGoogle Scholar
  47. Webster A (2003) Breeding and selection of apple and pear rootstocks. Acta Hort 622:499–512CrossRefGoogle Scholar
  48. Webster A (2004) Vigour mechanisms in dwarfing rootstocks for temperate fruit trees. Acta Hortic 658:29–41CrossRefGoogle Scholar
  49. Wertheim S (2002) Rootstocks for European pear: a review. Acta Hortic 596:299–309CrossRefGoogle Scholar
  50. Westwood MN, Chestnut NE (1963) How to propagate Old Home pear rootstocks. Oregon Ornamental and Nursery Digest 7(1):3–4Google Scholar
  51. Willemsen V, Wolkenfelt H, de Vrieze G, Weisbeek P, Scheres B (1998) The HOBBIT gene is required for formation of the root meristem in the Arabidopsis embryo. Development (Cambridge, England) 125(3):521–531Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Palmerston North Research CentreThe New Zealand Institute for Plant & Food Research Limited (PFR)Palmerston NorthNew Zealand
  2. 2.School of Biological SciencesUniversity of AucklandAucklandNew Zealand
  3. 3.Motueka Research CentrePFRMotuekaNew Zealand
  4. 4.Hawke’s Bay Research CentrePFRHavelock NorthNew Zealand
  5. 5.Mount Albert Research CentrePFRAucklandNew Zealand

Personalised recommendations