De novo assembly of transcriptome from Rhododendron latoucheae Franch. using Illumina sequencing and development of new EST-SSR markers for genetic diversity analysis in Rhododendron

  • Wen Xing
  • Juyang Liao
  • Mengying Cai
  • Qingfang Xia
  • Yan Liu
  • Wen Zeng
  • Xiaoling Jin
Original Article
Part of the following topical collections:
  1. Gene Expression


Rhododendron is universally known for its showy flower, and Rhododendron latoucheae Franch. is an adaptable and wide altitude range species of Rhododendron, with beautiful fragrant flowers and medicinal functions. However, genetic studies of Rhododendron have been hindered by limited genomic resources and genetic markers. In this study, a large dataset composed of 80,660 unigenes derived from the R. latoucheae transcriptome was assembled. Among these unigenes, 34,867 unigenes (43.22%) were annotated against public protein databases. In addition, a total of 14,415 EST-SSRs were identified from 16,019 unigene sequences with an average of one SSR per 2.87 kb. Di-nucleotide SSRs were the most abundant motif (80.03%), followed by tri- (18.82%), tetra- (0.91%), penta- (0.13%), and hexa-nucleotide (0.11%) repeats. Further, 200 primer pairs with more than six tandem repeats were selected, out of which 58 primer pairs amplified successfully and revealed polymorphism among six Rhododendron species. Among these 58 primer pairs, 37 primer pairs were polymorphic in 37 Rhododendron species and 30 R. latoucheae individuals from two national Chinese populations. A total of 382 alleles were identified, with an average of 10.3 alleles per locus. The phylogenetic tree, genetic structure analysis, and principal coordinate analysis demonstrated that major clusters corresponded to known phylogenetic trees and geographic distribution. These transcriptome data will facilitate gene discovery and functional genomic studies in Rhododendron, and the newly developed EST-SSR markers can be applied across multiple Rhododendron species and used for the evaluation of genetic relationships in Rhododendron.


EST-SSR marker Transcriptome Polymorphism Transferability Genetic relationships Rhododendron 



The authors thank Igenebook Bioinformatics Institute (Wuhan, China) for technical support. This research was supported by the China Postdoctoral Science Foundation (2015M572277) and the Research Foundation of Educational Commission of Hunan Province, China (15B255).

Compliance with ethical standards

Data archiving statement

The SSR sequence data has been deposited at the NCBI genebank ( under the accession BankIt1932982.

Supplementary material

11295_2017_1135_MOESM1_ESM.docx (40 kb)
Fig. S1 (DOCX 39 kb)
11295_2017_1135_MOESM2_ESM.docx (153 kb)
Fig. S2 (DOCX 153 kb)
11295_2017_1135_MOESM3_ESM.docx (321 kb)
Fig. S3 (DOCX 321 kb)
11295_2017_1135_MOESM4_ESM.docx (23 kb)
Table S1 (DOCX 23 kb)
11295_2017_1135_MOESM5_ESM.docx (22 kb)
Table S2 (DOCX 21 kb)
11295_2017_1135_MOESM6_ESM.docx (21 kb)
Table S3 (DOCX 21 kb)
11295_2017_1135_MOESM7_ESM.xlsx (28 kb)
Supplementary Material 1 (XLSX 28 kb)
11295_2017_1135_MOESM8_ESM.xlsx (19 kb)
Supplementary Material 2 (XLSX 18.9 kb)


  1. Ai Y, Zhang QH, Wang WN, Zhang CL, Cao Z, Bao MZ, He YH (2016) Transcriptomic analysis of differentially expressed genes during flower organ development in genetic male sterile and male fertile Tagetes erecta by digital Gene-expression profiling. PLoS One 11(3):e0150892CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ashkani S, Rafii MY, Rusli I, Sariah M, Abdullah SNA, Rahim HA, Latif MA (2012) SSRs for marker-assisted selection for blast resistance in rice (Oryza sativa L.) Plant Mol Biol Rep 30:79–86CrossRefGoogle Scholar
  3. Bassam BJ, Caetano-Anolles G, Gresshoff PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196:80–83Google Scholar
  4. Blanca J, Canizares J, Roig C, Ziarsolo P, Nuez F, Pico B (2011) Transcriptome characterization and high throughput SSRs and SNPs discovery in Cucurbita pepo (Cucurbitaceae). BMC Genomics 12:1–15CrossRefGoogle Scholar
  5. Bruni I, Mattia FD, Labra M, Grassi F, Fluch S, Berenyi M, Ferrari C (2013) Genetic variability of relict Rhododendron ferrugineum L. populations in the northern Apennines with some inferences for a conservation strategy. Plant Biosystems 146:24–32CrossRefGoogle Scholar
  6. Chamberlain DF, Rae SJ (1990) A revision of Rhododendron IV subgenus Tsutsusi. Edin J Bot 47:89–200CrossRefGoogle Scholar
  7. Chamberlain DF, Hyam R, Argent G, Fairweather G, Walter KS (1996) The genus Rhododendron: Its classification and synonymy. Royal Botanic Garden, Edinburgh, ScotlandGoogle Scholar
  8. Cox PA, Cox KNE (1997) The encyclopedia of Rhododendron species. Glendoick Publishing, PerthGoogle Scholar
  9. Dai FW, Tang CM, Wang ZJ, Luo GQ, He L, Yao LH (2015) De novo assembly, gene annotation, and marker development of mulberry (Morus atropurpurea) transcriptome. Tree Genet Genomes 11:26CrossRefGoogle Scholar
  10. De Riek J, Dendauw J, Mertens M, De Loose M, Heursel J, Van Bockstaele E (1999) Validation for criteria for the selection of AFLP markers to assess the genetic variation of a breeders’ collection of evergreen azaleas. Theor Appl Genet 99:1155–1165CrossRefGoogle Scholar
  11. Dendauw J, De Riek J, Arens P, Van Bockstaele E, Vosman B, Loose MD (2001) Development of sequenced tagged microsatellite site (STMS) markers in azalea. Acta Hort 546:193–197CrossRefGoogle Scholar
  12. Dunemann F, Kahnau R, Stange I (1999) Analysis of complex leaf and flower characters in Rhododendron using a molecular linkage map. Theor Appl Genet 98:1146–1155CrossRefGoogle Scholar
  13. Eeckhaut T, De Keyser E, Van Huylenbroeck J, De Riek J, Van Bockstaele E (2007) Application of embryo rescue after interspecific crosses in the genus Rhododendron. Plant Cell Tissue Organ Cult 89:29–35CrossRefGoogle Scholar
  14. Ellis J, Burke J (2007) EST-SSRs as a resource for population genetic analyses. Heredity 99:125–132CrossRefPubMedGoogle Scholar
  15. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  16. Fan CQ, Yang GJ, Zhao WM, Ding BY, Qin GW (1999) Phenolic components from Rhododendron latoucheae. Chin Chem Lett 10:567–570Google Scholar
  17. Farrar M (2007) Striped smith-waterman speeds database searches six times over other SIMD implementations. Bioinformatics 23:156–161CrossRefPubMedGoogle Scholar
  18. Ge H, Ren M (2011) DataTrans1.0, a software for microsatellite data processing based on excel macro. Mol Plant Breed 9:1359–1365Google Scholar
  19. Goetsch L, Eckert AJ, Hall BD (2005) The molecular systematics of Rhododendron (Ericaceae): a phylogeny based upon RPB2 gene sequences. Systematic Bot 30:616–626CrossRefGoogle Scholar
  20. Gonzalez-Ibeas D, Blanca J, Roig C, Gonzalez-To M, Pico B, Truniger V, Gomez P, Deleu W, Cano-Delgado A, Arus P, Nuez F, Garcia-Mas J, Puigdomenech P, Aranda MA (2007) MELOGEN: an EST database for melon functional genomics. BMC Genomics 8:306CrossRefPubMedPubMedCentralGoogle Scholar
  21. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gur-Arie R, Cohen CJ, Eitan Y, Shelef L, Hallerman EM, Kashi Y (2000) Simple sequence repeats in Escherichia coli: abundance distribution, composition, and polymorphism. Genome Res 10:62–71PubMedPubMedCentralGoogle Scholar
  23. Hu Z, Zhang T, Gao XX, Wang Y, Zhang Q, Zhou HJ, Zhao GF, Wang ML, Woeste KE, Zhao P (2016) De novo assembly and characterization of the leaf, bud, and fruit transcriptome from the vulnerable tree Juglans mandshurica for the development of 20 new microsatellite markers using Illumina sequencing. Mol Genet Genomics 291:849–862Google Scholar
  24. Iorizzo M, Senalik DA, Grzebelus D, Bowman M, Cavagnaro PF, Matvienko M, Ashrafi H, Van Deynze A, Simon PW (2011) De novo assembly and characterization of the carrot transcriptome reveals novel genes, new markers, and genetic diversity. BMC Genomics 12:389CrossRefPubMedPubMedCentralGoogle Scholar
  25. Iqbal MJ, Paden DW, Rayburn AL (1995) Clonal stability of RAPD markers in three Rhododendron species. J Environ Hortic 13:43–46Google Scholar
  26. Iseli C, Jongeneel CV, Bucher P (1999) ESTScan: a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. In: Proceedings of international conference on intelligent systems for molecular biology, pp 138–148Google Scholar
  27. Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36:D480–D484Google Scholar
  28. Keyser ED, Riek JD, Bockstaele EV (2009) Discovery of species-wide EST-derived markers in Rhododendron by intron-flanking primer design. Mol Breeding 23:171–178CrossRefGoogle Scholar
  29. Kullan ARK, Kulkarni AV, Kumar RS, Rajkumar R (2016) Development of microsatellite markers and their use in genetic diversity and population structure analysis in Casuarina. Tree Genet Genomes 12:49CrossRefGoogle Scholar
  30. Kurashige Y, Etoh T, Handa T, Takayanagi K, Yukawa T (2001) Sectional relationships in the genus Rhododendron (Ericaceae): evidence from matK and trnK intron sequences. Plant Syst Evol 228:1–14CrossRefGoogle Scholar
  31. Li DJ, Deng Z, Qin B, Liu XH, Men ZH (2012) De novo assembly and characterization of bark transcriptome using Illumina sequencing and development of EST-SSR markers in rubber tree (Hevea brasiliensis Muell. Arg.) BMC Genomics 13:192CrossRefPubMedPubMedCentralGoogle Scholar
  32. Li XB, Jin F, Jin L, Jackson A, Huang C, Li KH, Shu XL (2014) Development of Cymbidium ensifolium genic-SSR markers and their utility in genetic diversity and population structure analysis in cymbidiums. BMC Genetics 15:124Google Scholar
  33. Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129CrossRefPubMedGoogle Scholar
  34. Liu L, Zhang SJ, Lian CL (2015) De novo transcriptome sequencing analysis of cDNA library and large-scale Unigene assembly in Japanese red pine (Pinus densiflora), Int. J Mol Sci 16:29047–29059CrossRefGoogle Scholar
  35. Luro F, Costantino G, Terol J, Argout X, Allario T, Wincker P, Talon M, Ollitrault P, Morillon R (2008) Transferability of the EST-SSRs developed on Nules clementine (Citrus clementina Hort ex tan) to other citrus species and their effectiveness for genetic mapping. BMC Genomics 9:287Google Scholar
  36. Niu SH, Li ZX, Yuan HW, Chen XY, Li Y, Li W (2013) Transcriptome characterisation of Pinus tabuliformis and evolution of genes in the Pinus phylogeny. BMC Genomics 14:263CrossRefPubMedPubMedCentralGoogle Scholar
  37. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  38. Qiao X, Li M, Li LT, Yin H, Wu JY, Zhang SL (2015) Genome-wide identification and comparative analysis of the heat shock transcription factor family in Chinese white pear (Pyrus bretschneideri) and five other Rosaceae species. BMC Plant Biol 15:12CrossRefPubMedPubMedCentralGoogle Scholar
  39. Scariot V, De Keyser E, Handa T, De Riek J (2007a) Comparative study of the discriminating capacity and effectiveness of AFLP, STMS and EST markers in assessing genetic relationships among evergreen azaleas. Plant Breed 126:207–212CrossRefGoogle Scholar
  40. Scariot V, Handa T, De Riek J (2007b) A contribution to the classification of evergreen azalea cultivars located in the Lake Maggiore area (Italy) by means of AFLP markers. Euphytica 158:47–66CrossRefGoogle Scholar
  41. Scheiber SM, Jarret RL, Robacker CD, Newman M (2000) Genetic relationships within Rhododendron L. section Pentanthera G. Don based on sequences of the internal transcribed spacer (ITS) region. Sci Hortic 85:123–135CrossRefGoogle Scholar
  42. Tan LQ, Wang LY, Xu LY, Wu LY, Peng M, Zhang CZ, Wei K, Bai PX, Li HL, Cheng H, Qi GN (2016) SSR-based genetic mapping and QTL analysis for timing of spring bud flush, young shoot color, and mature leaf size in tea plant (Camellia sinensis). Tree Genet Genomes 12:52CrossRefGoogle Scholar
  43. Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23:48–55CrossRefPubMedGoogle Scholar
  44. Wang XQ, Huang Y, Long CL (2009) Isolation and characterization of twenty-four microsatellite loci for Rhododendron decorum Franch. (Ericaceae). Hortscience 44:2028–2030Google Scholar
  45. Wei H, Dhanaraj AL, Rowland LJ, Fu Y, Krebs SL, Arora R (2005a) Comparative analysis of expressed sequence tags from cold-acclimated and non-acclimated leaves of Rhododendron catawbiense Michx. Planta 221:406–416CrossRefPubMedGoogle Scholar
  46. Wei H, Fu Y, Arora R (2005b) Intron-flanking EST-PCR markers: from genetic marker development to gene structure analysis in Rhododendron. Theor Appl Genet 111:1347–1356CrossRefPubMedGoogle Scholar
  47. Wei H, Fu Y, Arora R (2006) Utilization of intron-flanking EST-specific markers in the phylogenetic analysis and parentage identification of Rhododendron species and hybrids. J Am Soc Hortic Sci 131:814–819Google Scholar
  48. Wu HB, Gong H, Liu P, He XL, Luo SB, Zheng XM, Zhang CY, He XM, Luo J (2014a) Large-scale development of EST-SSR markers in sponge gourd via transcriptome sequencing. Mol Breeding 34:1903–1915CrossRefGoogle Scholar
  49. Wu J, Cai SF, Cheng FY, Cui HL, Zhou H (2014b) Characterisation and development of EST-SSR markers in tree peony using transcriptome sequences. Mol Breeding 34:1853–1866CrossRefGoogle Scholar
  50. Yan J, Yu L, Xuan JP, Lu Y, Lu SJ, Zhu WM (2016) De novo transcriptome sequencing and gene expression profiling of spinach (Spinacia oleracea L.) leaves under heat stress. Scientific Reports 6:19473CrossRefPubMedPubMedCentralGoogle Scholar
  51. Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L, Wang J (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34:W293–W297CrossRefPubMedPubMedCentralGoogle Scholar
  52. Yeh FC, Yang RC, Boyle T et al (1999) POPGENE, version 1.32: the user friendly software for population genetic analysis. Molecular Biology and Biotechnology Centre, University of Alberta, Edmonton, AB, CanadaGoogle Scholar
  53. Zhang Q, Li J, Zhao YB, Korban SS, Han YP (2012) Evaluation of genetic diversity in Chinese wild apple species along with apple cultivars using SSR markers. Plant Mol Biol Rep 30:539–546Google Scholar
  54. Zheng XF, Pan C, Diao Y, You YN, Yang CZ, Hu ZL (2013) Development of microsatellite markers by transcriptome sequencing in two species of Amorphophallus (Araceae). BMC Genomics 14:490CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Wen Xing
    • 1
  • Juyang Liao
    • 2
  • Mengying Cai
    • 1
  • Qingfang Xia
    • 1
  • Yan Liu
    • 2
  • Wen Zeng
    • 1
  • Xiaoling Jin
    • 1
  1. 1.College of Landscape ArchitectureCentral South University of Forestry and TechnologyChangshaPeople’s Republic of China
  2. 2.Hunan Forest Botanical GardenChangshaPeople’s Republic of China

Personalised recommendations