To what extent do wild apples in Kazakhstan retain their genetic integrity?

  • Madina Y. Omasheva
  • Henryk Flachowsky
  • Natalya A. Ryabushkina
  • Alexandr S. Pozharskiy
  • Nurbol N. Galiakparov
  • Magda-Viola Hanke
Original Article
Part of the following topical collections:
  1. Gene Conservation


Kazakhstan belongs to the center of origin of apple. Malus sieversii (Ledeb.) M. Roem., the ancestral progenitor of the cultivated apple is native to this region. Pressure on the natural habitats of this wild apple has been intensified due to agriculture, grazing, and urbanization in the last century. For decades, M. sieversii in Kazakhstan has been subjected to the “Red Book of the Kazakh SSR” and today, this species is threatened with extinction. Wild apple undergoes exceptional losses in habitats, and the risk for losing the genetic integrity becomes worse due to increasing cultivation of cultivated apples and frequently occurring crosspollination events. The present study was focused on the current state of M. sieversii in Kazakhstan, the level of its diversity, its genetic integrity, and the identification of regions where future activities for conservation will have a good chance of success. A total of 311 M. sieversii samples of 12 populations collected in the wild, 16 previously selected wild apple genotypes, and 50 grown cultivars were studied using 16 simple sequence repeat (SSR) markers for genetic analysis. The results suggest that the level of genetic diversity is high. The differentiation between the populations was low, although the within-population heterozygosity was relatively high. A significant number of hybrids (8–95%) between M. sieversii and cultivated apples were found suggesting frequent crop-to-wild gene flow. The percentage of pure wild apple genotypes was highest in Krutoe truct and Tauturgen. These sites should be taken into account for future in situ long-term preservation activities.


Malus sieversii Microsatellite markers Genetic diversity Population structure 



The research was funded by the Grant on the subpriority “Fundamental Studies in the Area of Natural Sciences,” Budget Program 101 of the Scientific Committee of the Ministry of Education and Science of the Republic of Kazakhstan (grant no. 1105/GF4). We gratefully acknowledge Dr. S.V. Chekalin for collecting Malus sieversii samples and providing information on the wild apple germplasm. We also acknowledge R. Gläß for her technical assistance and Dr. F.O. Emeriewen for improving the English language of the manuscript.

Data archiving statement

All data are provided in Table S3.

Supplementary material

11295_2017_1134_MOESM1_ESM.docx (17 kb)
Table S1 (DOCX 17 kb)
11295_2017_1134_MOESM2_ESM.docx (15 kb)
Table S2 (DOCX 14 kb)
11295_2017_1134_MOESM3_ESM.xlsx (68 kb)
Table S3 (XLSX 67 kb)
11295_2017_1134_MOESM4_ESM.docx (12 kb)
Table S4 (DOCX 12 kb)
11295_2017_1134_MOESM5_ESM.jpg (8.2 mb)
Fig. S1 UPGMA dendrogram based on Nei’s (1972) genetic distances calculated from the dataset of 16 SSRs across the 311 wild apple genotypes, 50 cultivars and 16 clones selected by Dzhangaliev using R. notes. TT Tauturgen, AR Almaty reserve, BB Belbulak, GAG Great Almaty gorge, KM Ketmen, TB Tarbagatay, CR Chernoff River, KT Krutoe truct, LRB Lepsy right bank, BG Bozturgay gorge, AD Aksu Dzhabagly, UK Uryukty, MD M. domestica, Dzh Dzhangaliev apples clones. (JPEG 8355 kb)
11295_2017_1134_MOESM6_ESM.jpg (5.7 mb)
Fig. S2 Admixture analyses of the 311 genotypes of M. sieversii, 16 clones selected by Dzhangaliev and 50 being grown in Kazakhstan apple cultivars by Bayesian assignment using the STRUCTURE software with K = 2–5. Each individual is represented as a horizontal bar. Different colors in the same line indicate the individual’s admixture proportion (Q value) in K clusters. (JPEG 5881 kb)


  1. Aubakirova K, Omasheva M, Ryabushkina N et al (2014) Evaluation of five protocols for DNA extraction from leaves of Malus sieversii, Vitis vinifera and Armeniaca vulgaris. Genet Mol Res 13(1):1278–1287CrossRefPubMedGoogle Scholar
  2. Bassett CL, Glenn DM, Forsline PL, Wisniewski ME, Farrell RE Jr (2011) Characterizing water use efficiency and water deficit responses in apple (Malus × domestica Borkh. and Malus sieversii Ledeb.) M. Roem. HortSci 46(8):1079–1084Google Scholar
  3. Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331PubMedPubMedCentralGoogle Scholar
  4. Bykov BA (1961) In: Pavlov NV (ed) Flora of Kazakhstan [in Russian]. Kazakh Academy of Science, Alma-Ata, Volume 4, pp 402–405Google Scholar
  5. Cornille A, Gladieux P, Smulders MJM, Roldan-Ruiz I, Laurens F, Le Cam B, Nersesyan A, Clavel J, Olonova M, Feugey L, Gabrielyan I, Zhang X-G, Tenaillon MI, Giraud T (2012) New insight into the history of domesticated apple: secondary contribution of the European wild apple to the genome of cultivated varieties. PLoS Genet 8(5):e1002703CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cornille A, Gladieux P, Giraud T (2013) Crop-to-wild gene flow and spatial genetic structure in the closest wild relatives of the cultivated apple. Evol Appl 6:737–748CrossRefGoogle Scholar
  7. Cornille A, Giraud T, Smulders MJ, Roldan-Ruiz I, Gladieux P (2014) The domestication and evolutionary ecology of apples. Trends Genet 30(2):57–65CrossRefPubMedGoogle Scholar
  8. Cornille A, Feurtey A, Gelin U, Ropars J, Misvanderbrugge K, Gladieux P, Giraud T (2015) Anthropogenic and natural drivers of gene flow in a temperate wild fruit tree: a basis for conservation and breeding programs in apples. Evol Appl 8:373–384CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cuizhi G, Spongberg SA (2003) Malus Miller. In: Wu Z, Raven PH (eds) Flora of China, volume 9. Science Press, Beijing, and Missouri Botanical Garden Press, St. Louis, pp 179–189Google Scholar
  10. Dray S, Dufour AB (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Software 22(4):1–20CrossRefGoogle Scholar
  11. Dzhangaliev AD (1977) The wild apple tree of Kazakhstan. Nauka Publishing House of Kazakh SSR, Alma AtaGoogle Scholar
  12. Dzhangaliev AD (2003) The wild apple tree of Kazakhstan. Hortic Rev 29:63–285Google Scholar
  13. Earl DA, von Holdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Res 4(2):359–361CrossRefGoogle Scholar
  14. Eastwood A, Lazkov G, Newton A (2009) The red list of trees of Central Asia. Fauna & Flora International, Cambridge, ISBN: 9781 903703 27 4Google Scholar
  15. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  16. Flora of Kazakhstan (1956) Edited by Pavlov NV. KazSSR Academy of Science Publishing, Аlma-Аtа, V.1, pp 30–32Google Scholar
  17. Forest encyclopedia (1986) Edited by Anuchin NP, Vorobiev GI. Soviet Encyclopedia, USSR, V.2., pp 180–182Google Scholar
  18. Forsline PL, Aldwinckle HS, Dickson EE, Luby JJ, Hokanson SC (2003) Collection, maintenance, characterization, and utilization of wild apples of Central Asia. Hortic Rev 29:1–62Google Scholar
  19. Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-based analysis of ecological data. J Stat Software 22(7):1–19CrossRefGoogle Scholar
  20. Gross BL, Henk AD, Forsline PL, Richards CM, Volk GM (2012) Identification of interspecific hybrids among domesticated apple and its wild relatives. Tree Genet Genom 8(6):1223–1235CrossRefGoogle Scholar
  21. Gross BL, Volk GM, Richards CM, Henk AD, Forsline PL, Szewc-Mcfadden AK, Fazio G, Chao CT (2013) Diversity captured in the USDA-ARS National Plant Germplasm System apple core collection. J Am Soc Hortic Sci 138(5):375–381Google Scholar
  22. Harris SA, Robinson JP, Juniper BE (2002) Genetic clues to the origin of the apple. Trends Genet 18(8):426–430CrossRefPubMedGoogle Scholar
  23. Hemmat M, Weeden NF, Brown SK (2003) Mapping and evaluation of Malus × domestica microsatellites in apple and pear. J Am Soc Hortic Sci 128(4):515–520Google Scholar
  24. Hokanson SC, Szewc-McFadden AK, Lamboy WF, McFerson GR (1998) Microsatellite (SSR) markers reveal genetic identities, genetic diversity and relationships in a Malus domestica Borkh. Core subset collection. Theor Appl Genet 94:671–683CrossRefGoogle Scholar
  25. Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Res 9(5):1322–1332CrossRefGoogle Scholar
  26. Ignatov A, Bodishevskaya A (2011) Malus. In: Kole C (ed) Wild crop relatives: genomic and breeding resources: temperate fruits. Springer-Verlag, Berlin Heidelberg, pp 45–64CrossRefGoogle Scholar
  27. Isutsa DK, Merwin IA (2000) Malus germplasm varies in resistance or tolerance to apple replant disease in a mixture of New York orchard soils. HortSci 35(2):262–268Google Scholar
  28. Ivashenko AA (2005) The treasures of flora in Kazakhstan. Through the pages of the red Book. Almaty Kitap, Almaty, p 119Google Scholar
  29. Jakobsson M, Noah A (2007) Rosenberg CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23(14):1801–1806CrossRefPubMedGoogle Scholar
  30. Janisiewicz WJ, Saftner RA, Conway WS, Forsline PL (2008) Preliminary evaluation of apple germplasm from Kazakhstan for resistance to postharvest blue mold in fruit caused by Penicillium expansum. HortSci 2(43):420–426Google Scholar
  31. Jombart T (2008) Adegenet: an R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405CrossRefPubMedGoogle Scholar
  32. Kalinowski ST (2005) HP-Rare: a computer program for performing rarefaction on measures of allelic diversity. Mol Ecol Notes 5:187–189CrossRefGoogle Scholar
  33. Kamvar ZN, Brooks JC, Grünwald NJ (2015) Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality. Front Genet 6:208CrossRefPubMedPubMedCentralGoogle Scholar
  34. Liebhard R, Gianfranceschi L, Koller B, Ryder CD, Tarchini R, Van de Weg WE, Gessler C (2002) Development and characterization of 140 new microsatellites in apple (Malus x domestica Borkh.) Mol Breed 10:217–241CrossRefGoogle Scholar
  35. Matschiner M, Salzburger W (2009) TANDEM: integrating automated allele binning into genetics and genomics workflows. Bioinformatics 25(15):1982–1983CrossRefPubMedGoogle Scholar
  36. Missiaggia A, Grattapaglia D (2006) Plant microsatellite genotyping with 4-color fluorescent detection using multiple-tailed primers. Genet Mol Res 5:72–78PubMedGoogle Scholar
  37. Nei M (1972) Genetic distance between populations. Am Nat 106(949):283–292CrossRefGoogle Scholar
  38. Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetic and evolution in R language. Bioinformatics 20:289–290CrossRefPubMedGoogle Scholar
  39. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in excel: population genetic software for teaching and research update. Bioinformatics 19:2537–2539CrossRefGoogle Scholar
  40. Pons L (2006) Remarkable Kazak apples. AgResearch Magazine 54(1):4–6Google Scholar
  41. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  42. R Development Core Team (2008) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL
  43. Reim S, Proft A, Heinz S, Lochschmidt F, Höfer M, Tröber U, Wolf H (2015) Pollen movement in a Malus sylvestris population and conclusions for conservation measures. Plant Genet Res 1–9. doi: 10.1017/S1479262115000301
  44. Richards CM, Volk GM, Reilley AA, Henk AD, Lockwood DR, Reevers PA, Forsline PL (2009a) Genetic diversity and population structure in Malus sieversii, a wild progenitor species of domesticated apple. Tree Genet Genomes 5:339–347CrossRefGoogle Scholar
  45. Richards CM, Volk GM, Reeves PA, Reilley AA, Henk AD, Forsline PL, Aldwinckle HS (2009b) Selection of stratified core sets representing wild apple (Malus sieversii). J Am Soc Hortic Sci 134(2):228–235Google Scholar
  46. Rosenberg NA (2004) Distruct: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138CrossRefGoogle Scholar
  47. Severtsov NA (1873) Travel on Turkestan region and research of mountain country Tien Shan. Accomplished on a Commission of Russian Geographic Society, St. Petersburg, pp 82–83Google Scholar
  48. Takhtadzhian AL (1986) Floristic regions of the world. University of California Press, Berkley, ISBN-10: 0520040279, ISBN-13: 978–0520040274Google Scholar
  49. Turehanova RM (2012) Sievers apple tree in Kazakhstan, research and selection of forms. Terrain 12(1):44–61Google Scholar
  50. Vavilov NI (1931) The wild relatives of fruit trees of the Asian part of the USSR and Caucasus and the problem of the origin of fruit trees. Trans Appl Bot Gene Breed 26(3):132–134Google Scholar
  51. Velasco R, Zharkikh A, Affourtit J et al (2010) The genome of the domesticated apple (Malus × domestica Borkh.) Nature Genet 42:833–839CrossRefPubMedGoogle Scholar
  52. Volk GM, Reilley AD, Henk PL, Forsline HS, Aldwinckle, Richards CM (2005) Ex situ conservation of vegetatively-propagated species: development of a seed-based core collection for Malus sieversii. J Am Soc Hortic Sci 130:203–210Google Scholar
  53. Volk GM, Richards CM, Henk AD, Reilley AD (2009) Novel diversity identified in a wild apple population from the Kyrgyz Republic. HortSci 44(2):516–518Google Scholar
  54. Volk GM, Henk AD, Richards CM, Forsline PL, Chao CT (2013) Malus sieversii: a diverse Central Asian apple species in the USDA-ARS national plant germplasm system. HortSci 48:1440–1444Google Scholar
  55. Wang A, Aldwinckle H, Forsline P, Main D, Fazio G, Brown S, Xu K (2012) EST contig-based SSR linkage maps for Malus ×domestica cv Royal Gala and an apple scab resistant accession of M. sieversii, the progenitor species of domestic apple. Mol Breed 29:379–397CrossRefGoogle Scholar
  56. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer-Verlag, New YorkCrossRefGoogle Scholar
  57. Zhang C, Chen X, He T, Liu X, Feng T, Yuan Z (2007) Genetic structure of Malus sieversii population from Xinjiang, China, revealed by SSR markers. J Genet Genomics 34:947–955CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Madina Y. Omasheva
    • 1
  • Henryk Flachowsky
    • 2
  • Natalya A. Ryabushkina
    • 1
  • Alexandr S. Pozharskiy
    • 1
  • Nurbol N. Galiakparov
    • 1
  • Magda-Viola Hanke
    • 2
  1. 1.Institute of Plant Biology and BiotechnologyAlmatyKazakhstan
  2. 2.Julius Kühn-Institute, Federal Research Institute for Cultivated Plants, Institute for Breeding Research on Fruit CropsDresdenGermany

Personalised recommendations