Tree Genetics & Genomes

, 13:41 | Cite as

Plastomes of Mimosoideae: structural and size variation, sequence divergence, and phylogenetic implication

Original Article
Part of the following topical collections:
  1. Taxonomy

Abstract

Plastomes of Fabaceae show both significant structural and size variation; however, most published plastomes are from subfamily Papilionoideae and only a few are from the other two subfamilies. In order to address the plastome structural and size variation of subfamily Mimosoideae, we integrated 11 newly sequenced plastomes from representing genera with three previously published ones. Each mimosoid plastome presented a typical quadripartite structure and contained 111 unique genes. Their inverted repeats (IRs) experienced multiple expansion/contraction; a ca. 13-kb IR expansion into small single copy (SSC) was detected in plastomes of a clade formed by tribe Ingeae and Acacia sensu stricto (s.s.), and a ca. 1.7-kb IR expansion into and a ca. 1.9-kb contraction out of large single copy (LSC) were found in Pithecellobium flexicaule and Acacia dealbata, respectively. Linear regression analysis showed decreased synonymous substitution rates of genes relocating from SSC into IR. A loss of both introns of clpP occurred in A. dealbata and Faidherbia albida, and a duplicated clpP copy was detected in A. dealbata. Furthermore, a 421-bp inversion that containing rps18 was found in A. dealbata. The size of mimosoid plastomes was found significantly affected by a IR-SC boundary shift, and also associated with repeat content. Plastome coding and noncoding regions with variable sequence divergence may supply valuable markers for molecular evolutionary and phylogenetic studies at different taxonomic levels. Plastid phylogenomics well resolved relationships among sampled mimosoid species.

Keywords

Plastome IR expansion/contraction Repeats Mimosoideae Sequence divergence Phylogenomics 

Supplementary material

11295_2017_1124_MOESM1_ESM.pdf (24 kb)
ESM 1(PDF 23 kb)
11295_2017_1124_MOESM2_ESM.pdf (18 kb)
ESM 2(PDF 18 kb)
11295_2017_1124_MOESM3_ESM.pdf (2.7 mb)
ESM 3(PDF 2787 kb)
11295_2017_1124_MOESM4_ESM.pdf (8 kb)
ESM 4(PDF 8 kb)
11295_2017_1124_MOESM5_ESM.pdf (28 kb)
ESM 5(PDF 27 kb)
11295_2017_1124_MOESM6_ESM.pdf (408 kb)
ESM 6(PDF 407 kb)
11295_2017_1124_MOESM7_ESM.pdf (14 kb)
ESM 7(PDF 14.2 kb)
11295_2017_1124_MOESM8_ESM.pdf (14 kb)
ESM 8(PDF 14 kb)

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedCrossRefGoogle Scholar
  2. Barrett CF, Specht CD, Leebens-Mack J, Stevenson DW, Zomlefer WB, Davis JI (2014) Resolving ancient radiations: can complete plastid gene sets elucidate deep relationships among the tropical gingers (Zingiberales)? Ann Bot 113:119–133PubMedCrossRefGoogle Scholar
  3. Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27:573–580PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bewick AJ, Chain FJJ, Heled J, Evans BJ (2012) The pipid root. Syst Biol 61:913–926PubMedCrossRefGoogle Scholar
  5. Blazier J, Guisinger MM, Jansen RK (2011) Recent loss of plastid-encoded ndh genes within Erodium (Geraniaceae). Plant Mol Biol 76:263–272CrossRefGoogle Scholar
  6. Blazier JC, Jansen RK, Mower JP, Govindu M, Zhang J, Weng ML, Ruhlman TA (2016) Variable presence of the inverted repeat and plastome stability in Erodium. Ann Bot 117:1209–1220PubMedCrossRefGoogle Scholar
  7. Bock R (2007) Structure, function, and inheritance of plastid genomes. In: Bock R (ed) Cell and molecular biology of plastids. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 29–63CrossRefGoogle Scholar
  8. Bouchenak-Khelladi Y, Maurin O, Hurter J, van der Bank M (2010) The evolutionary history and biogeography of Mimosoideae (Leguminosae): an emphasis on African acacias. Mol Phylogen Evol 57:495–508CrossRefGoogle Scholar
  9. Cai ZQ, Guisinger M, Kim HG, Ruck E, Blazier JC, McMurtry V, Kuehl JV, Boore J, Jansen RK (2008) Extensive reorganization of the plastid genome of Trifolium subterraneum (Fabaceae) is associated with numerous repeated sequences and novel DNA insertions. J Mol Evol 67:696–704PubMedCrossRefGoogle Scholar
  10. Chase MW, Cowan RS, Hollingsworth PM, van den Berg C, Madrinan S, Petersen G, Seberg O, Jorgsensen T, Cameron KM, Carine M, Pedersen N, Hedderson TAJ, Conrad F, Salazar GA, Richardson JE, Hollingsworth ML, Barraclough TG, Kelly L, Wilkinson M (2007) A proposal for a standardised protocol to barcode all land plants. Taxon 56:295–299Google Scholar
  11. Choi IS, Kim JH, Choi BH (2015) Complete plastid genome of Astragalus mongholicus var. nakaianus (Fabaceae). Mitochondr DNA. doi:10.3109/19401736.2015.1053118 Google Scholar
  12. Chumley TW, Palmer JD, Mower JP, Fourcade HM, Calie PJ, Boore JL, Jansen RK (2006) The complete chloroplast genome sequence of Pelargonium × hortorum: organization and evolution of the largest and most highly rearranged chloroplast genome of land plants. Mol Biol Evol 23:2175–2190PubMedCrossRefGoogle Scholar
  13. Cosner ME, Jansen RK, Palmer JD, Downie SR (1997) The highly rearranged chloroplast genome of Trachelium caeruleum (Campanulaceae): multiple inversions, inverted repeat expansion and contraction, transposition, insertions/deletions, and several repeat families. Curr Genet 31:419–429PubMedCrossRefGoogle Scholar
  14. Curci PL, De Paola D, Danzi D, Vendramin GG, Sonnante G (2015) Complete chloroplast genome of the multifunctional crop globe artichoke and comparison with other Asteraceae. PLoS One 10:e0120589PubMedPubMedCentralCrossRefGoogle Scholar
  15. Delsuc F, Brinkmann H, Philippe H (2005) Phylogenomics and the reconstruction of the tree of life. Nat Rev Genet 6:361–375PubMedCrossRefGoogle Scholar
  16. Dong WP, Liu J, Yu J, Wang L, Zhou SL (2012) Highly variable chloroplast markers for evaluating plant phylogeny at low taxonomic levels and for DNA barcoding. PLoS One 7:e35071PubMedPubMedCentralCrossRefGoogle Scholar
  17. Downie SR, Jansen RK (2015) A comparative analysis of whole plastid genomes from the Apiales: expansion and contraction of the inverted repeat, mitochondrial to plastid transfer of DNA, and identification of highly divergent noncoding regions. Syst Bot 40:336–351CrossRefGoogle Scholar
  18. Downie SR, Palmer JD (1992) Use of chloroplast DNA rearrangements in reconstructing plant phylogeny. In: Soltis PS, Soltis DE, Doyle JJ (eds) Molecular systematics of plants. Springer, Chapman & Hall, New York, NY, pp 14–35CrossRefGoogle Scholar
  19. Doyle JJ (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem bull 19:11–15Google Scholar
  20. Doyle JJ, Doyle JL, Ballenger JA, Palmer JD (1996) The distribution and phylogenetic significance of a 50-kb chloroplast DNA inversion in the flowering plant family Leguminosae. Mol Phylogen Evol 5:429–438CrossRefGoogle Scholar
  21. Drabkova L, Kirschner J, Vlcek C, Paces V (2004) TrnL-trnF intergenic spacer and trnL intron define major clades within Luzula and Juncus (Juncaceae): importance of structural mutations. J Mol Evol 59:1–10PubMedCrossRefGoogle Scholar
  22. Dugas DV, Hernandez D, Koenen EJM, Schwarz E, Straub S, Hughes CE, Jansen RK, Nageswara-Rao M, Staats M, Trujillo JT, Hajrah NH, Alharbi NS, Al-Malki AL, Sabir JSM, Bailey CD (2015) Mimosoid legume plastome evolution: IR expansion, tandem repeat expansions, and accelerated rate of evolution in clpP. Sci Rep 5:16958PubMedPubMedCentralCrossRefGoogle Scholar
  23. Duvall MR, Fisher AE, Columbus JT, Ingram AL, Wysocki WP, Burke SV, Clark LG, Kelchner SA (2016) Phylogenomics and plastome evolution of the chloridoid grasses (Chloridoideae: Poaceae). Int J Plant Sci 177:235–246CrossRefGoogle Scholar
  24. Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:1–19CrossRefGoogle Scholar
  25. Eisen JA (1998) Phylogenomics: improving functional predictions for uncharacterized genes by evolutionary analysis. Genome Res 8:163–167PubMedCrossRefGoogle Scholar
  26. Eisen JA, Fraser CM (2003) Phylogenomics: intersection of evolution and genomics. Science 300:1706–1707PubMedCrossRefGoogle Scholar
  27. Erixon P, Oxelman B (2008) Whole-gene positive selection, elevated synonymous substitution rates, duplication, and indel evolution of the chloroplast clpP1 gene. PLoS One 3:e1386PubMedPubMedCentralCrossRefGoogle Scholar
  28. Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I (2004) VISTA: computational tools for comparative genomics. Nucleic Acids Res 32:W273–W279PubMedPubMedCentralCrossRefGoogle Scholar
  29. Gao X, Zhu YP, Wu BC, Zhao YM, Chen JQ, Hang YY (2008) Phylogeny of Dioscorea sect. Stenophora based on chloroplast matK, rbcL and trnL-F sequences. J Syst Evol 46:315–321Google Scholar
  30. Givnish TJ, Spalink D, Ames M, Lyon SP, Hunter SJ, Zuluaga A, Iles WJD, Clements MA, Arroyo MTK, Leebens-Mack J, Endara L, Kriebel R, Neubig KM, Whitten WM, Williams NH, Cameron KM (2015) Orchid phylogenomics and multiple drivers of their extraordinary diversification. Proc R Soc B Biol Sci 282:20151553CrossRefGoogle Scholar
  31. Goulding SE, Olmstead RG, Morden CW, Wolfe KH (1996) Ebb and flow of the chloroplast inverted repeat. Mol Gen Genet 252:195–206PubMedCrossRefGoogle Scholar
  32. Greiner S, Wang X, Rauwolf U, Silber MV, Mayer K, Meurer J, Haberer G, Herrmann RG (2008) The complete nucleotide sequences of the five genetically distinct plastid genomes of Oenothera, subsection Oenothera: I. Sequence evaluation and plastome evolution. Nucleic Acids Res 36:2366–2378PubMedPubMedCentralCrossRefGoogle Scholar
  33. Grewe F, Guo WH, Gubbels EA, Hansen AK, Mower JP (2013) Complete plastid genomes from Ophioglossum californicum, Psilotum nudum, and Equisetum hyemale reveal an ancestral land plant genome structure and resolve the position of Equisetales among monilophytes. BMC Evol Biol 13. doi:10.1186/1471-2148-13-8
  34. Guisinger MM, Kuehl JV, Boore JL, Jansen RK (2011) Extreme reconfiguration of plastid genomes in the angiosperm family Geraniaceae: rearrangements, repeats, and codon usage (vol 28, pg 583, 2011). Mol Biol Evol 28:1543CrossRefGoogle Scholar
  35. Guo W, Grewe F, Cobo-Clark A, Fan W, Duan Z, Adams RP, Schwarzbach AE, Mower JP (2014) Predominant and substoichiometric isomers of the plastid genome coexist within Juniperus plants and have shifted multiple times during cupressophyte evolution. Genome Biol Evol 6:580–590PubMedPubMedCentralCrossRefGoogle Scholar
  36. Guo XW, Castillo-Ramirez S, Gonzalez V, Bustos P, Fernandez-Vazquez JL, Santamaria RI, Arellano J, Cevallos MA, Davila G (2007) Rapid evolutionary change of common bean (Phaseolus vulgaris L.) plastome, and the genomic diversification of legume chloroplasts. BMC Genomics 8. doi:10.1186/1471-2164-8-228
  37. Haberle RC, Fourcade HM, Boore JL, Jansen RK (2008) Extensive rearrangements in the chloroplast genome of Trachelium caeruleum are associated with repeats and tRNA genes. J Mol Evol 66:350–361PubMedCrossRefGoogle Scholar
  38. Hilu KW, Black C, Diouf D, Burleigh JG (2008) Phylogenetic signal in matK vs. trnK: a case study in early diverging eudicots (angiosperms). Mol Phylogen Evol 48:1120–1130CrossRefGoogle Scholar
  39. Hipkins VD, Marshall KA, Neale DB, Rottmann WH, Strauss SH (1995) A mutation hotspot in the chloroplast genome of a conifer (Douglas-fir, Pseudotsuga) is caused by variability in the number of direct repeats derived from a partially duplicated tRNA gene. Curr Genet 27:572–579PubMedCrossRefGoogle Scholar
  40. Hollingsworth PM, Graham SW, Little DP (2011) Choosing and using a plant DNA barcode. PLoS One 6:e19254PubMedPubMedCentralCrossRefGoogle Scholar
  41. Hoot SB, Palmer JD (1994) Structural rearrangements, including parallel inversions, within the chloroplast genome of Anemone and related genera. J Mol Evol 38:274–281PubMedCrossRefGoogle Scholar
  42. Jansen RK, Cai Z, Raubeson LA, Daniell H, Depamphilis CW, Leebens-Mack J, Muller KF, Guisinger-Bellian M, Haberle RC, Hansen AK, Chumley TW, Lee SB, Peery R, McNeal JR, Kuehl JV, Boore JL (2007) Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc Natl Acad Sci U S A 104:19369–19374PubMedPubMedCentralCrossRefGoogle Scholar
  43. Jansen RK, Ruhlman TA (2012) Plastid genomes of seed plants. In: Bock R, Knoop V (eds) Genomics of chloroplasts and mitochondria. Springer Netherlands, Dordrecht, pp 103–126CrossRefGoogle Scholar
  44. Jansen RK, Wojciechowski MF, Sanniyasi E, Lee SB, Daniell H (2008) Complete plastid genome sequence of the chickpea (Cicer arietinum) and the phylogenetic distribution of rps12 and clpP intron losses among legumes (Leguminosae). Mol Phylogen Evol 48:1204–1217CrossRefGoogle Scholar
  45. Jian SG, Soltis PS, Gitzendanner MA, Moore MJ, Li R, Hendry TA, Qiu YL, Dhingra A, Bell CD, Soltis DE (2008) Resolving an ancient, rapid radiation in Saxifragales. Syst Biol 57:38–57PubMedCrossRefGoogle Scholar
  46. Jo YD, Park J, Kim J, Song W, Hur CG, Lee YH, Kang BC (2011) Complete sequencing and comparative analyses of the pepper (Capsicum annuum L.) plastome revealed high frequency of tandem repeats and large insertion/deletions on pepper plastome. Plant Cell Rep 30:217–229PubMedCrossRefGoogle Scholar
  47. Käss E, Wink M (1996) Molecular evolution of the Leguminosae: phylogeny of the three subfamilies based on rbcL-sequences. Biochem Syst Ecol 24:365–378CrossRefGoogle Scholar
  48. Kato T, Kaneko T, Sato S, Nakamura Y, Tabata S (2000) Complete structure of the chloroplast genome of a legume, Lotus japonicus. DNA Res 7:323–330PubMedCrossRefGoogle Scholar
  49. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780PubMedPubMedCentralCrossRefGoogle Scholar
  50. Kazakoff SH, Imelfort M, Edwards D, Koehorst J, Biswas B, Batley J, Scott PT, Gresshoff PM (2012) Capturing the biofuel wellhead and powerhouse: the chloroplast and mitochondrial genomes of the leguminous feedstock tree Pongamia pinnata. PLoS One 7:e51687PubMedPubMedCentralCrossRefGoogle Scholar
  51. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649PubMedPubMedCentralCrossRefGoogle Scholar
  52. Kim KJ, Jansen RK (1995) NdhF sequence evolution and the major clades in the sunflower family. Proc Natl Acad Sci U S A 92:10379–10383PubMedPubMedCentralCrossRefGoogle Scholar
  53. Kim YD, Jansen RK (1994) Characterization and phylogenetic distribution of a chloroplast DNA rearrangement in the Berberidaceae. Plant Syst Evol 193:107–114CrossRefGoogle Scholar
  54. Koch MA, Dobes C, Matschinger M, Bleeker W, Vogel J, Kiefer M, Mitchell-Olds T (2005) Evolution of the trnF(GAA) gene in Arabidopsis relatives and the Brassicaceae family: monophyletic origin and subsequent diversification of a plastidic pseudogene. Mol Biol Evol 22:1032–1043PubMedCrossRefGoogle Scholar
  55. Kress WJ, Wurdack KJ, Zimmer EA, Weigt LA, Janzen DH (2005) Use of DNA barcodes to identify flowering plants. Proc Natl Acad Sci U S A 102:8369–8374PubMedPubMedCentralCrossRefGoogle Scholar
  56. Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R (2001) REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res 29:4633–4642PubMedPubMedCentralCrossRefGoogle Scholar
  57. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359PubMedPubMedCentralCrossRefGoogle Scholar
  58. Lavin M, Doyle JJ, Palmer JD (1990) Evolutionary significance of the loss of the chloroplast-DNA inverted repeat in the Leguminosae subfamily Papilionoideae. Evolution 44:390–402CrossRefGoogle Scholar
  59. Lee HL, Jansen RK, Chumley TW, Kim KJ (2007) Gene relocations within chloroplast genomes of Jasminum and Menodora (Oleaceae) are due to multiple, overlapping inversions. Mol Biol Evol 24:1161–1180PubMedCrossRefGoogle Scholar
  60. Lei WJ, Ni DP, Wang YJ, Shao JJ, Wang XC, Yang D, Wang JS, Chen HM, Liu C (2016) Intraspecific and heteroplasmic variations, gene losses and inversions in the chloroplast genome of Astragalus membranaceus. Sci Rep 6:21669PubMedPubMedCentralCrossRefGoogle Scholar
  61. Lewis GP, Schrire BD, Mackinder BA, Lock M (2005) Legumes of the world. Royal Botanic Gardens, Kew, Richmond, U.KGoogle Scholar
  62. Li FW, Kuo LY, Pryer KM, Rothfels CJ (2016) Genes translocated into the plastid inverted repeat show decelerated substitution rates and elevated GC content. Genome Biol Evol 8:2452–2458PubMedPubMedCentralCrossRefGoogle Scholar
  63. Li JH (2008) Phylogeny of Catalpa (Bignoniaceae) inferred from sequences of chloroplast ndhF and nuclear ribosomal DNA. J Syst Evol 46:341–348Google Scholar
  64. Lin CP, Wu CS, Huang YY, Chaw SM (2012) The complete chloroplast genome of Ginkgo biloba reveals the mechanism of inverted repeat contraction. Genome Biol Evol 4:374–381PubMedPubMedCentralCrossRefGoogle Scholar
  65. Lohse M, Drechsel O, Kahlau S, Bock R (2013) OrganellarGenomeDRAW—a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res 41:W575–W581PubMedPubMedCentralCrossRefGoogle Scholar
  66. LPWG (2013) Legume phylogeny and classification in the 21st century: progress, prospects and lessons for other species-rich clades. Taxon 62:217–248CrossRefGoogle Scholar
  67. Luckow M, Miller JT, Murphy DJ, Livshultz T (2003) A phylogenetic analysis of the Mimosoideae (Leguminosae) based on chloroplast DNA sequence data. In: Klitgaard BB, Bruneau A (eds) Advances in legume systematics, part 10. Higher level systematics. Royal Botanic Gardens, Kew, Richmond, U.K., pp 197–220Google Scholar
  68. Luckow M, White PJ, Bruneau A (2000) Relationships among the basal genera of mimosoid legumes. In: Herendeen PS, Bruneau A (eds) Advances in legume systematics, part 9. Royal Botanic Gardens, Kew, Richmond, U.K., pp 165–180Google Scholar
  69. Luo Y, Ma PF, Li HT, Yang JB, Wang H, Li DZ (2016) Plastid phylogenomic analyses resolve Tofieldiaceae as the root of the early diverging monocot order Alismatales. Genome Biol Evol 8:932–945PubMedPubMedCentralCrossRefGoogle Scholar
  70. Maddison WP, Maddison DR (2016) Mesquite: a modular system for evolutionary analysis. Version 3.10. http://mesquiteproject.org
  71. Magee AM, Aspinall S, Rice DW, Cusack BP, Semon M, Perry AS, Stefanovic S, Milbourne D, Barth S, Palmer JD, Gray JC, Kavanagh TA, Wolfe KH (2010) Localized hypermutation and associated gene losses in legume chloroplast genomes. Genome Res 20:1700–1710PubMedPubMedCentralCrossRefGoogle Scholar
  72. Martin GE, Rousseau-Gueutin M, Cordonnier S, Lima O, Michon-Coudouel S, Naquin D, de Carvalho JF, Ainouche M, Salmon A, Ainouche A (2014) The first complete chloroplast genome of the Genistoid legume Lupinus luteus: evidence for a novel major lineage-specific rearrangement and new insights regarding plastome evolution in the legume family. Ann Bot 113:1197–1210PubMedPubMedCentralCrossRefGoogle Scholar
  73. Miller JT, Grimes JW, Murphy DJ, Bayer RJ, Ladiges PY (2003) A phylogenetic analysis of the Acacieae and Ingeae (Mimosoideae: Fabaceae) based on trnK, matK, psbA-trnH, and trnL/trnF sequence data. Syst Bot 28:558–566Google Scholar
  74. Miller JT, Seigler D (2012) Evolutionary and taxonomic relationships of Acacia s.l. (Leguminosae: Mimosoideae). Aust Syst Bot 25:217–224CrossRefGoogle Scholar
  75. Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Gateway Computing Environments Workshop (GCE), 2010. IEEE, pp 1–8. doi: 10.1109/GCE.2010.5676129
  76. Moore MJ, Bell CD, Soltis PS, Soltis DE (2007) Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms. Proc Natl Acad Sci U S A 104:19363–19368PubMedPubMedCentralCrossRefGoogle Scholar
  77. Moore MJ, Soltis PS, Bell CD, Burleigh JG, Soltis DE (2010) Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots. Proc Natl Acad Sci U S A 107:4623–4628PubMedPubMedCentralCrossRefGoogle Scholar
  78. Newmaster SG, Fazekas AJ, Ragupathy S (2006) DNA barcoding in land plants: evaluation of rbcL in a multigene tiered approach. Can J Bot 84:335–341CrossRefGoogle Scholar
  79. Newmaster SG, Ragupathy S (2009) Testing plant barcoding in a sister species complex of pantropical Acacia (Mimosoideae, Fabaceae). Mol Ecol Resour 9:172–180CrossRefGoogle Scholar
  80. Ogihara Y, Terachi T, Sasakuma T (1988) Intramolecular recombination of chloroplast genome mediated by short direct-repeat sequences in wheat species. Proc Natl Acad Sci U S A 85:8573–8577PubMedPubMedCentralCrossRefGoogle Scholar
  81. Palmer JD (1991) Plastid chromosomes: structure and evolution. In: Biogorad L, Vasil IK (eds) Cell culture and somatic cell genetics of plants, The molecular biology of plastids, vol 7. Academic Press, San Diego, California, pp 5–53Google Scholar
  82. Palmer JD, Nugent JM, Herbon LA (1987a) Unusual structure of geranium chloroplast DNA: a triple-sized inverted repeat, extensive gene duplications, multiple inversions, and two repeat families. Proc Natl Acad Sci U S A 84:769–773PubMedPubMedCentralCrossRefGoogle Scholar
  83. Palmer JD, Osorio B, Aldrich J, Thompson WF (1987b) Chloroplast DNA evolution among legumes—loss of a large inverted repeat occurred prior to other sequence rearrangements. Curr Genet 11:275–286CrossRefGoogle Scholar
  84. Palmer JD, Osorio B, Thompson WF (1988) Evolutionary significance of inversions in legume chloroplast DNAs. Curr Genet 14:65–74CrossRefGoogle Scholar
  85. Patel RK, Jain M (2012) NGS QC toolkit: a toolkit for quality control of next generation sequencing data. PLoS One 7:e30619PubMedPubMedCentralCrossRefGoogle Scholar
  86. Perry AS, Wolfe KH (2002) Nucleotide substitution rates in legume chloroplast DNA depend on the presence of the inverted repeat. J Mol Evol 55:501–508PubMedCrossRefGoogle Scholar
  87. Peterson PM, Romaschenko K, Johnson G (2010) A classification of the Chloridoideae (Poaceae) based on multi-gene phylogenetic trees. Mol Phylogen Evol 55:580–598CrossRefGoogle Scholar
  88. Plunkett GM, Downie SR (2000) Expansion and contraction of the chloroplast inverted repeat in Apiaceae subfamily Apioideae. Syst Bot 25:648–667CrossRefGoogle Scholar
  89. Raubeson LA, Jansen RK (2004) Chloroplast genomes of plants. In: Henry RJ (ed) Plant diversity and evolution: genotypic and phenotypic variation in higher plants. CABI Publishing, Wallingford, Oxfordshire, UK, pp 45–68Google Scholar
  90. R Development Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical computing, Vienna. http://www.r-project.org/
  91. Ruhfel BR, Gitzendanner MA, Soltis PS, Soltis DE, Burleigh JG (2014) From algae to angiosperms-inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes. BMC Evol Biol 14. doi:10.1186/1471-2148-14-23
  92. Sabir J, Schwarz E, Ellison N, Zhang J, Baeshen NA, Mutwakil M, Jansen R, Ruhlman T (2014) Evolutionary and biotechnology implications of plastid genome variation in the inverted-repeat-lacking clade of legumes. Plant Biotechnol J 12:743–754PubMedCrossRefGoogle Scholar
  93. Saski C, Lee SB, Daniell H, Wood TC, Tomkins J, Kim HG, Jansen RK (2005) Complete chloroplast genome sequence of Glycine max and comparative analyses with other legume genomes. Plant Mol Biol 59:309–322PubMedCrossRefGoogle Scholar
  94. Schattner P, Brooks AN, Lowe TM (2005) The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res 33:W686–W689PubMedPubMedCentralCrossRefGoogle Scholar
  95. Shen GF, Chen K, Wu M, Kung SD (1982) Nicotiana chloroplast genome. 4. N. accuminata has larger inverted repeats and genome size. Mol Gen Genet 187:12–18CrossRefGoogle Scholar
  96. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313PubMedPubMedCentralCrossRefGoogle Scholar
  97. Stein DB, Palmer JD, Thompson WF (1986) Structural evolution and flip-flop recombination of chloroplast DNA in the fern genus Osmunda. Curr Genet 10:835–841CrossRefGoogle Scholar
  98. Sveinsson S, Cronk Q (2014) Evolutionary origin of highly repetitive plastid genomes within the clover genus (Trifolium). BMC Evol Biol 14. doi:10.1186/s12862-014-0228-6
  99. Swofford D (2002) PAUP*: phylogenetic analysis using parsimony (* and other methods), version 4. Sinauer Associates, Sunderland, MA. doi:10.1111/j.0014-3820.2002.tb00191.x Google Scholar
  100. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729PubMedPubMedCentralCrossRefGoogle Scholar
  101. Vijverberg K, Bachmann K (1999) Molecular evolution of a tandemly repeated trnF(GAA) gene in the chloroplast genomes of Microseris (Asteraceae) and the use of structural mutations in phylogenetic analyses. Mol Biol Evol 16:1329–1340PubMedCrossRefGoogle Scholar
  102. Wakasugi T, Tsudzuki J, Ito S, Nakashima K, Tsudzuki T, Sugiura M (1994) Loss of all ndh genes as determined by sequencing the entire chloroplast genome of the black pine Pinus thunbergii. Proc Natl Acad Sci U S A 91:9794–9798PubMedPubMedCentralCrossRefGoogle Scholar
  103. Wang RJ, Cheng CL, Chang CC, Wu CL, Su TM, Chaw SM (2008) Dynamics and evolution of the inverted repeat-large single copy junctions in the chloroplast genomes of monocots. BMC Evol Biol 8. doi:10.1186/1471-2148-8-36
  104. Weng ML, Blazier JC, Govindu M, Jansen RK (2014) Reconstruction of the ancestral plastid genome in Geraniaceae reveals a correlation between genome rearrangements, repeats, and nucleotide substitution rates. Mol Biol Evol 31:645–659PubMedCrossRefGoogle Scholar
  105. Wicke S, Muller KF, de Pamphilis CW, Quandt D, Wickett NJ, Zhang Y, Renner SS, Schneeweiss GM (2013) Mechanisms of functional and physical genome reduction in photosynthetic and nonphotosynthetic parasitic plants of the broomrape family. Plant Cell 25:3711–3725PubMedPubMedCentralCrossRefGoogle Scholar
  106. Wickett NJ et al (2014) Phylotranscriptomic analysis of the origin and early diversification of land plants. Proc Natl Acad Sci U S A 111:E4859–E4868PubMedPubMedCentralCrossRefGoogle Scholar
  107. Williams AV, Boykin LM, Howell KA, Nevill PG, Small I (2015) The complete sequence of the Acacia ligulata chloroplast genome reveals a highly divergent clpP1 gene (vol 10, e0125768, 2015). PLoS One 10:e0138367PubMedPubMedCentralCrossRefGoogle Scholar
  108. Wilson CA (2009) Phylogenetic relationships among the recognized series in Iris section Limniris. Syst Bot 34:277–284CrossRefGoogle Scholar
  109. Wojciechowski MF, Sanderson MJ, Steele KP, Liston A (2000) Molecular phylogeny of the “temperate herbaceous tribes” of papilionoid legumes: a supertree approach. In: Herendeen PS, Bruneau A (eds) Advances in legume systematics, part 9. Royal Botanic Gardens, Kew, Richmond, U.K., pp 277–298Google Scholar
  110. Wu CS, Chaw SM (2014) Highly rearranged and size-variable chloroplast genomes in conifers II clade (cupressophytes): evolution towards shorter intergenic spacers. Plant Biotechnol J 12:344–353PubMedCrossRefGoogle Scholar
  111. Wyman SK, Jansen RK, Boore JL (2004) Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20:3252–3255PubMedCrossRefGoogle Scholar
  112. Wysocki WP, Clark LG, Attigala L, Ruiz-Sanchez E, Duvall MR (2015) Evolution of the bamboos (Bambusoideae; Poaceae): a full plastome phylogenomic analysis. BMC Evol Biol 15. doi:10.1186/s12862-015-0321-5
  113. Xi ZX, Ruhfel BR, Schaefer H, Amorim AM, Sugumaran M, Wurdack KJ, Endress PK, Matthews ML, Stevens PF, Mathews S, Davis CC (2012) Phylogenomics and a posteriori data partitioning resolve the cretaceous angiosperm radiation Malpighiales. Proc Natl Acad Sci U S A 109:17519–17524PubMedPubMedCentralCrossRefGoogle Scholar
  114. Xiong AS, Peng RH, Zhuang J, Gao F, Zhu B, Fu XY, Xue Y, Jin XF, Tian YS, Zhao W, Yao QH (2009) Gene duplication, transfer, and evolution in the chloroplast genome. Biotechnol Adv 27:340–347PubMedCrossRefGoogle Scholar
  115. Yang JB, Li DZ, Li HT (2014) Highly effective sequencing whole chloroplast genomes of angiosperms by nine novel universal primer pairs. Mol Ecol Resour 14:1024–1031PubMedCrossRefGoogle Scholar
  116. Yang ZH (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591PubMedCrossRefGoogle Scholar
  117. Zhang T, Zeng CX, Yang JB, Li HT, Li DZ (2016) Fifteen novel universal primer pairs for sequencing whole chloroplast genomes and a primer pair for nuclear ribosomal DNAs. J Syst Evol 54:219–227CrossRefGoogle Scholar
  118. Zhang YJ, Ma PF, Li DZ (2011) High-throughput sequencing of six bamboo chloroplast genomes: phylogenetic implications for temperate woody bamboos (Poaceae: Bambusoideae). PLoS One 6:e20596PubMedPubMedCentralCrossRefGoogle Scholar
  119. Zhong BJ, Yonezawa T, Zhong Y, Hasegawa M (2010) The position of Gnetales among seed plants: overcoming pitfalls of chloroplast phylogenomics. Mol Biol Evol 27:2855–2863PubMedCrossRefGoogle Scholar
  120. Zhou XM, Xu SX, Xu JX, Chen BY, Zhou KY, Yang G (2012) Phylogenomic analysis resolves the interordinal relationships and rapid diversification of the Laurasiatherian mammals. Syst Biol 61:150–164PubMedCrossRefGoogle Scholar
  121. Zhu A, Guo W, Gupta S, Fan W, Mower JP (2016) Evolutionary dynamics of the plastid inverted repeat: the effects of expansion, contraction, and loss on substitution rates. New Phytol 209:1747–1756PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Germplasm Bank of Wild Species, Kunming Institute of BotanyChinese Academy of SciencesKunmingChina
  2. 2.Kunming College of Life SciencesUniversity of Chinese Academy of SciencesKunmingChina

Personalised recommendations