Tree Genetics & Genomes

, 13:37 | Cite as

Transcriptome profiling of Eucalyptus nitens reveals deeper insight into the molecular mechanism of cold acclimation and deacclimation process

  • José Gaete-Loyola
  • Catalina Lagos
  • María F. Beltrán
  • Sofía Valenzuela
  • Verónica Emhart
  • Marta Fernández
Original Article
Part of the following topical collections:
  1. Gene Expression

Abstract

Eucalyptus nitens (H. Deane & Maiden) is a fast-growing species used principally for pulpwood and solid-wood production. Due to its cold tolerance, it is preferred over other Eucalyptus species at high elevations. To get a deeper insight in the molecular mechanisms of cold acclimation, the transcriptome profiling by RNA-Seq in plants of E. nitens under cold acclimation and deacclimation process was compared in order to identify differentially expressed genes (DEGs). Transcriptomes from control, cold acclimated to chilling temperature, cold acclimated at freezing temperature, and deacclimation condition were compared using Eucalyptus grandis as reference genome. The differential expression analysis allowed the identification of a total of 1600 DEGs out of which 1088 and 1071 were identified in response to cold acclimation and deacclimation, respectively. The gene ontology analysis revealed that DEGs were significantly enriched in response to stimulus, response to abiotic stimulus, membrane, catalytic activity, and cell periphery. Furthermore, the biochemical pathways analysis revealed a large number of DEGs represented in the biosynthesis of phenylpropanoids, specifically flavonoid biosynthesis likely to support ROS scarvening, genes related to photosynthesis, genes that take part in glycolysis/gluconeogenesis related to starch biosynthesis pathway, and genes represented in carotenoid biosynthesis pathway suggesting a role in the regulation of ABA synthesis, which has been previously involved in stress tolerance. A total of 115 DEGs corresponding to transcription factors were identified, being the most represented families AP2, MYB, and WRKY. Expression of six DEGs was validated using qRT-PCR that further supported the in silico results. The present study provides a comprehensive view of global gene expression and revealed valuable information about the dynamic and complex nature of gene expression occurring during cold acclimation and deacclimation process in E. nitens.

Keywords

RNA-Seq In silico gene expression Differentially expressed genes Transcription factors Cold acclimation-responsive genes qRT-PCR 

Notes

Acknowledgements

Financial support came from Fondecyt Iniciación 11121559 and Genómica Forestal S.A. We would like to thank Conicyt for scholarship to CL and MFB.

Author’s contributions

VE provided plant material. CL and MFB performed growth chamber experiments. JGL performed the RNA-Seq data analysis. CL and MFB performed the validation of reference genes and CA-responsive genes by qRT-PCR. JGL, CL, and MF drafted the manuscript. MF initiated, designed, and led the project. SV contributed to experimental design. All authors contributed to manuscript preparation and editing. All authors read and approved the final manuscript.

Data archiving statement

The short-read sequences data have been submitted to the NCBI Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra) under accession SRP066573. The Bioproject ID related to this paper is PRJNA303180.

Supplementary material

11295_2017_1121_MOESM1_ESM.docx (14 kb)
Table S1(DOCX 13 kb)
11295_2017_1121_MOESM2_ESM.xlsx (39 kb)
Table S2 & S3(XLSX 39 kb)
11295_2017_1121_MOESM3_ESM.docx (473 kb)
Figure S1(DOCX 472 kb)
11295_2017_1121_MOESM4_ESM.docx (4.4 mb)
Figure S2(DOCX 4493 kb)
11295_2017_1121_MOESM5_ESM.docx (349 kb)
Figure S3(DOCX 349 kb)
11295_2017_1121_MOESM6_ESM.docx (38.3 mb)
Figure S4(DOCX 39194 kb)
11295_2017_1121_MOESM7_ESM.docx (38 kb)
Figure S5(DOCX 38 kb)

References

  1. Agarwal M, Hao Y, Kapoor A, Dong C-H, Fujii H, Zheng X, Zhu J-K (2006) A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J Biol Chem 281:37636–37645CrossRefPubMedGoogle Scholar
  2. Aguayo P et al (2016) Overexpression of an SKn-dehydrin gene from Eucalyptus globulus and Eucalyptus nitens enhances tolerance to freezing stress in Arabidopsis. Trees-Struct Funct 30:1785–1797. doi:10.1007/s00468-016-1410-9 CrossRefGoogle Scholar
  3. Anders S, Pyl PT, Huber W (2015) A Python framework to work with high-throughput sequencing data. Bioinformatics 31:166–10.Google Scholar
  4. Arora R, Wisniewski ME (1994) Cold acclimation in genetically related (sibling) deciduous and evergreen peach (Prunus persica [L.] Batsch) (II. A 60-kilodalton bark protein in cold-acclimated tissues of peach is heat stable and related to the dehydrin family of proteins). Plant Physiol 105:95–101CrossRefPubMedPubMedCentralGoogle Scholar
  5. Barrero-Gil J, Salinas J (2013) Post-translational regulation of cold acclimation response. Plant Sci 205-206:48–54. doi:10.1016/j.plantsci.2013.01.008 CrossRefPubMedGoogle Scholar
  6. Beck EH, Fettig S, Knake C, Hartig K, Bhattarai T (2007) Specific and unspecific responses of plants to cold and drought stress. J Biosci 32:501–510CrossRefPubMedGoogle Scholar
  7. Brunetti C, Di Ferdinando M, Fini A, Pollastri S, Tattini M (2013) Flavonoids as antioxidants and developmental regulators: relative significance in plants and humans. Int J Mol Sci 14:3540–3555CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cansev A, Gulen H, Eris A (2009) Cold-hardiness of olive (Olea europaea L.) cultivars in cold-acclimated and non-acclimated stages: seasonal alteration of antioxidative enzymes and dehydrin-like proteins. J Agric Sci 147:51–61CrossRefGoogle Scholar
  9. Cao PB, Azar S, SanClemente H, Mounet F, Dunand C, Marque G, Marque C, Teulières C (2015) Genome-wide analysis of the AP2/ERF family in Eucalyptus grandis: an intriguing over-representation of stress-responsive DREB1/CBF genes. PLoS ONE 10(4):e0121041Google Scholar
  10. Carbon S, Ireland A, Mungall CJ, Shu S, Marshall B, Lewis S (2009) AmiGO: online access to ontology and annotation data. Bioinformatics 25:288–289CrossRefPubMedGoogle Scholar
  11. Cassan-Wang H et al (2012) Reference genes for high-throughput quantitative reverse transcription–PCR analysis of gene expression in organs and tissues of Eucalyptus grown in various environmental conditions. Plant Cell Physiol 53:2101–2116CrossRefPubMedGoogle Scholar
  12. Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Report 11:113–116CrossRefGoogle Scholar
  13. Chawade A, Bräutigam M, Lindlöf A, Olsson O, Olsson B (2007) Putative cold acclimation pathways in Arabidopsis thaliana identified by a combined analysis of mRNA co-expression patterns, promoter motifs and transcription factors. BMC Genomics 8:304CrossRefPubMedPubMedCentralGoogle Scholar
  14. Chen H, Lai Z, Shi J, Xiao Y, Chen Z, Xu X (2010) Roles of Arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress. BMC Plant Biol 10:281CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chen L, Song Y, Li S, Zhang L, Zou C, Yu D (2012) The role of WRKY transcription factors in plant abiotic stresses. Biochimica et Biophysica Acta (BBA)—Gene Regulatory Mechanisms 1819:120–128CrossRefGoogle Scholar
  16. Chen L, Zhong H-y, Kuang J-f, Li J-g, Lu W-j, Chen J-y (2011) Validation of reference genes for RT-qPCR studies of gene expression in banana fruit under different experimental conditions. Planta 234:377–390CrossRefPubMedGoogle Scholar
  17. Chen S et al (2014) Performance comparison between rapid sequencing platforms for ultra-low coverage sequencing strategy. PLoS One:9Google Scholar
  18. Close D, Beadle C, Battaglia M (2004) Foliar anthocyanin accumulation may be a useful indicator of hardiness in eucalypt seedlings. For Ecol Manag 198:169–181CrossRefGoogle Scholar
  19. Costa e Silva F et al (2009) Acclimation to short-term low temperatures in two Eucalyptus globulus clones with contrasting drought resistance. Tree Physiol 29:77–86. doi:10.1093/treephys/tpn002 CrossRefPubMedGoogle Scholar
  20. Dugald CC, Chris LB, Philip HB, Greg KH (2000) Cold-induced photoinhibition affects establishment of Eucalyptus nitens (Deane and Maiden) maiden and Eucalyptus globulus Labill. Trees. doi:10.1007/s004680000070 Google Scholar
  21. El Kayal W, Navarro M, Marque G, Keller G, Marque C, Teulieres C (2006) Expression profile of CBF-like transcriptional factor genes from Eucalyptus in response to cold. J Exp Bot 57:2455–2469. doi:10.1093/jxb/erl019 CrossRefPubMedGoogle Scholar
  22. Fernández M, Troncoso V, Valenzuela S (2015) Transcriptome profile in response to frost tolerance in Eucalyptus globules. Plant Mol Biol Rep 33:1472–1485Google Scholar
  23. Fernández M, Valenzuela Águila S, Arora R, Chen K (2012a) Isolation and characterization of three cold acclimation-responsive dehydrin genes from Eucalyptus globulus. Tree Genet Genomes 8:149–162. doi:10.1007/s11295-011-0429-8 CrossRefGoogle Scholar
  24. Fernández M, Valenzuela S, Barraza H, Latorre J, Neira V (2012b) Photoperiod, temperature and water deficit differentially regulate the expression of four dehydrin genes from Eucalyptus globulus. Trees 26:1483–1493CrossRefGoogle Scholar
  25. Fernández M, Villarroel C, Balbontín C, Valenzuela S (2010) Validation of reference genes for real-time qRT-PCR normalization during cold acclimation in Eucalyptus globulus. Trees 24:1109–1116. doi:10.1007/s00468-010-0483-0 CrossRefGoogle Scholar
  26. Gilmour SJ, Fowler SG, Thomashow MF (2004) Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities. Plant Mol Biol 54:767–781CrossRefPubMedGoogle Scholar
  27. Gonzalez-Aguero M, Garcia-Rojas M, Di Genova A, Correa J, Maass A, Orellana A, Hinrichsen P (2013) Identification of two putative reference genes from grapevine suitable for gene expression analysis in berry and related tissues derived from RNA-Seq data. BMC Genomics 14:878CrossRefPubMedPubMedCentralGoogle Scholar
  28. Guy CL (1990) Cold acclimation and freezing stress tolerance: role of protein metabolism. Annu Rev Plant Biol 41:187–223CrossRefGoogle Scholar
  29. Hara M, Terashima S, Kuboi T (2001) Characterization and cryoprotective activity of cold-responsive dehydrin from Citrus unshiu. J Plant Physiol 158:1333–1339CrossRefGoogle Scholar
  30. Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J 61:1041–1052CrossRefPubMedGoogle Scholar
  31. Huang DW, Sherman BT, Lempicki RA (2009a) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37:1–13CrossRefGoogle Scholar
  32. Huang DW, Sherman BT, Lempicki RA (2009b) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57CrossRefGoogle Scholar
  33. Huang L, Yan H, Jiang X, Yin G, Zhang X, Qi X, et al. (2014) Identification of candidate reference genes in perennial ryegrass for quantitative RT-PCR under various abiotic stress conditions. PloS One 9:e93724.Google Scholar
  34. Hundertmark M, Hincha DK (2008) LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics 9:118CrossRefPubMedPubMedCentralGoogle Scholar
  35. Janská A, Maršík P, Zelenková S, Ovesná J (2010) Cold stress and acclimation—what is important for metabolic adjustment? Plant Biol 12:395–405CrossRefPubMedGoogle Scholar
  36. Jiang J, Ma S, Ye N, Jiang M, Cao J, Zhang J (2016) WRKY transcription factors in plant responses to stresses Journal of Integrative Plant Biology. doi:10.1111/jipb.12513.
  37. Jin J, Zhang H, Kong L, Gao G, Luo J (2014) PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Res 42:D1182–D1187Google Scholar
  38. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30CrossRefPubMedPubMedCentralGoogle Scholar
  39. Kasuga J, Hashidoko Y, Nishioka A, Yoshiba M, Arakawa K, Fujikawa S (2008) Deep supercooling xylem parenchyma cells of katsura tree (Cercidiphyllum japonicum) contain flavonol glycosides exhibiting high anti-ice nucleation activity. Plant Cell Environ 31:1335–1348CrossRefPubMedGoogle Scholar
  40. Keller G, Cao PB, San Clemente H, El Kayal W, Marque C, Teulières C (2013) Transcript profiling combined with functional annotation of 2,662 ESTs provides a molecular picture of Eucalyptus gunnii cold acclimation. Trees 27:1713–1735CrossRefGoogle Scholar
  41. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14:R36. doi:10.1186/gb-2013-14-4-r36 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Külheim C, Yeoh SH, Maintz J, Foley WJ, Moran GF (2009) Comparative SNP diversity among four Eucalyptus species for genes from secondary metabolite biosynthetic pathways. BMC Genomics 10:452CrossRefPubMedPubMedCentralGoogle Scholar
  43. Lee JM, Roche JR, Donaghy DJ, Thrush A, Sathish P (2010) Validation of reference genes for quantitative RT-PCR studies of gene expression in perennial ryegrass (Lolium perenne L.). BMC Mol Biol 11:8CrossRefPubMedPubMedCentralGoogle Scholar
  44. Leek JT, Taub MA, Rasgon JL (2012) A statistical approach to selecting and confirming validation targets in-omics experiments. BMC bioinformatics 13:1CrossRefGoogle Scholar
  45. Li C-F et al (2015) Global transcriptome and gene regulation network for secondary metabolite biosynthesis of tea plant (Camellia sinensis). BMC Genomics 16:560CrossRefPubMedPubMedCentralGoogle Scholar
  46. Li J, Besseau S, Törönen P, Sipari N, Kollist H, Holm L, Palva ET (2013) Defense-related transcription factors WRKY70 and WRKY54 modulate osmotic stress tolerance by regulating stomatal aperture in Arabidopsis. New Phytol 200:457–472CrossRefPubMedPubMedCentralGoogle Scholar
  47. Liu H-c, Charng Y-y (2013) Common and distinct functions of Arabidopsis class A1 and A2 heat shock factors in diverse abiotic stress responses and development. Plant Physiol 163:276–290CrossRefPubMedPubMedCentralGoogle Scholar
  48. Liu Y, Jiang Y, Lan J, Zou Y, Gao J (2014) Comparative transcriptomic analysis of the response to cold acclimation in Eucalyptus dunnii. PLoS One 9(11):e113091Google Scholar
  49. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408CrossRefPubMedGoogle Scholar
  50. Mangul S, Caciula A, Al Seesi S, Brinza D, Mӑndoiu I, Zelikovsky A (2014) Transcriptome assembly and quantification from ion torrent RNA-Seq data. BMC Genomics 15:S7CrossRefPubMedPubMedCentralGoogle Scholar
  51. Mangwanda R, Myburg AA, Naidoo S (2015) Transcriptome and hormone profiling reveals Eucalyptus grandis defence responses against Chrysoporthe austroafricana. BMC Genomics 16:319CrossRefPubMedPubMedCentralGoogle Scholar
  52. Marian CO, Eris A, Krebs SL, Arora R (2004) Environmental regulation of a 25 kDa dehydrin in relation to Rhododendron cold acclimation. J Am Soc Hortic Sci 129:354–359Google Scholar
  53. Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 18:1509–1517CrossRefPubMedPubMedCentralGoogle Scholar
  54. Miura K, Furumoto T (2013) Cold signaling and cold response in plants. Int J Mol Sci 14:5312–5337CrossRefPubMedPubMedCentralGoogle Scholar
  55. Mizrachi E, Hefer CA, Ranik M, Joubert F, Myburg AA (2010) De novo assembled expressed gene catalog of a fast-growing Eucalyptus tree produced by Illumina mRNA-Seq. BMC Genomics 11:681CrossRefPubMedPubMedCentralGoogle Scholar
  56. Monroy AF, Sangwan V, Dhindsa RS (1998) Low temperature signal transduction during cold acclimation: protein phosphatase 2A as an early target for cold-inactivation. Plant J 13:653–660CrossRefGoogle Scholar
  57. Moraga PS, Escobar R, Valenzuela SA (2006) Resistance to freezing in three Eucalyptus globulus Labill subspecies. Electron J Biotechnol 9(3):310–314Google Scholar
  58. Morimoto RI (1998) Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 12:3788–3796CrossRefPubMedGoogle Scholar
  59. Moura JCMS, Araújo P, dos Brito MS, Souza UR, Viana JOF, Mazzafera P (2012) Validation of reference genes from Eucalyptus spp. under different stress conditions. BMC research notes 5:634CrossRefPubMedPubMedCentralGoogle Scholar
  60. Mowla SB, Cuypers A, Driscoll SP, Kiddle G, Thomson J, Foyer CH, Theodoulou FL (2006) Yeast complementation reveals a role for an Arabidopsis thaliana late embryogenesis abundant (LEA)-like protein in oxidative stress tolerance. Plant J 48:743–756CrossRefPubMedGoogle Scholar
  61. Navarrete-Campos D, Bravo LA, Rubilar RA, Emhart V, Sanhueza R (2013) Drought effects on water use efficiency, freezing tolerance and survival of Eucalyptus globulus and Eucalyptus globulus × nitens cuttings. New For 44:119–134CrossRefGoogle Scholar
  62. Navarro M, Ayax C, Martinez Y, Laur J, El Kayal W, Marque C, Teulieres C (2011) Two EguCBF1 genes overexpressed in Eucalyptus display a different impact on stress tolerance and plant development. Plant Biotechnol J 9:50–63CrossRefPubMedGoogle Scholar
  63. Navarro M, Marque G, Ayax C, Keller G, Borges JP, Marque C, Teulieres C (2009) Complementary regulation of four Eucalyptus CBF genes under various cold conditions. J Exp Bot 60:2713–2724. doi:10.1093/jxb/erp129 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Nguyen HC et al. (2016) Special trends in CBF and DREB2 groups in Eucalyptus gunnii vs Eucalyptus grandis suggest that CBF are master players in the trade-off between growth and stress resistance Physiologia plantarum. doi:10.1111/ppl.12529
  65. Oates CN, Külheim C, Myburg AA, Slippers B, Naidoo S (2015) The transcriptome and terpene profile of Eucalyptus grandis reveals mechanisms of defense against the insect pest, Leptocybe invasa. Plant Cell Physiol 56:1418–1428Google Scholar
  66. Oquist G, Huner NP (2003) Photosynthesis of overwintering evergreen plants. Annu Rev Plant Biol 54:329–355. doi:10.1146/annurev.arplant.54.072402.115741 CrossRefPubMedGoogle Scholar
  67. Pearce RS (2001) Plant freezing and damage. Ann Bot 87:417–424CrossRefGoogle Scholar
  68. Powell LE (1987) The hormonal control of bud and seed dormancy in woody plants. In: Plant hormones and their role in plant growth and development. (Davies, P.J., ed.). Dordrecht: Martinus-Nijhoff, pp. 539–552Google Scholar
  69. Quail MA et al (2012) A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics 13:341CrossRefPubMedPubMedCentralGoogle Scholar
  70. Rajkumar AP et al (2015) Experimental validation of methods for differential gene expression analysis and sample pooling in RNA-seq. BMC Genomics 16:1CrossRefGoogle Scholar
  71. Ray DL, Johnson JC (2014) Validation of reference genes for gene expression analysis in olive (Olea europaea) mesocarp tissue by quantitative real-time RT-PCR. BMC research notes 7:304CrossRefPubMedPubMedCentralGoogle Scholar
  72. Raymond C, Harwood C, Owen J (1986) A conductivity method for screening populations of eucalypts for frost damage and frost tolerance. Aust J Bot 34:377–393. doi:10.1071/BT9860377 CrossRefGoogle Scholar
  73. Read J, Busby J (1990) Comparative responses to temperature of the major canopy species of Tasmanian cool temperate rain-forest and their ecological significance. II. Net photosynthesis and climate analysis. Aust J Bot 38:185–205CrossRefGoogle Scholar
  74. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140. doi:10.1093/bioinformatics/btp616 CrossRefPubMedGoogle Scholar
  75. Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K (2000) Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants the. Plant J 23:319–327CrossRefPubMedGoogle Scholar
  76. Salleh FM et al (2012) A novel function for a redox-related LEA protein (SAG21/AtLEA5) in root development and biotic stress responses. Plant Cell Environ 35:418–429CrossRefPubMedGoogle Scholar
  77. Schmieder R, Edwards R (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics 27:863–864. doi:10.1093/bioinformatics/btr026 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Singh KB, Foley RC, Oñate-Sánchez L (2002) Transcription factors in plant defense and stress responses. Curr Opin Plant Biol 5:430–436CrossRefPubMedGoogle Scholar
  79. Söderman E, Mattsson J, Engström P (1996) The Arabidopsis homeobox gene ATHB-7 is induced by water deficit and by abscisic acid. Plant J 10:375–381CrossRefPubMedGoogle Scholar
  80. Steyn W, Wand S, Holcroft D, Jacobs G (2002) Anthocyanins in vegetative tissues: a proposed unified function in photoprotection. New Phytol 155:349–361CrossRefGoogle Scholar
  81. Stracke R, Werber M, Weisshaar B (2001) The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol 4:447–456CrossRefPubMedGoogle Scholar
  82. Strickler SR, Bombarely A, Mueller LA (2012) Designing a transcriptome next-generation sequencing project for a nonmodel plant species1. Am J Bot 99:257–266CrossRefPubMedGoogle Scholar
  83. Tarazona S, García-Alcalde F, Dopazo J, Ferrer A, Conesa A (2011) Differential expression in RNA-seq: a matter of depth. Genome Res 21:2213–2223CrossRefPubMedPubMedCentralGoogle Scholar
  84. Team RC (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/.
  85. Teklemariam TA, Blake TJ (2004) Phenylalanine ammonia-lyase-induced freezing tolerance in jack pine (Pinus banksiana) seedlings treated with low, ambient levels of ultraviolet-B radiation. Physiol Plant 122:244–253CrossRefGoogle Scholar
  86. Thavamanikumar S, Southerton S, Thumma B (2014) RNA-Seq using two populations reveals genes and alleles controlling wood traits and growth in Eucalyptus nitens. PLoS One 9:e101104CrossRefPubMedPubMedCentralGoogle Scholar
  87. Thomashow MF (1998) Role of cold-responsive genes in plant freezing tolerance. Plant Physiol 118:1–8. doi:10.1104/pp.118.1.1 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Biol 50:571–599CrossRefGoogle Scholar
  89. Thomashow MF (2010) Molecular basis of plant cold acclimation: insights gained from studying the CBF cold response pathway. Plant Physiol 154:571–577. doi:10.1104/pp.110.161794 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Thumma BR, Sharma N, Southerton SG (2012) Transcriptome sequencing of Eucalyptus camaldulensis seedlings subjected to water stress reveals functional single nucleotide polymorphisms and genes under selection. BMC Genomics 13:364CrossRefPubMedPubMedCentralGoogle Scholar
  91. Tibbits W, Boomsma D, Jarvis S (1997) Distribution, biology, genetics, and improvement programs for Eucalyptus globulus and E. nitens around the world. In: White T, Huber D, Powell G (eds), Proceedings of the 24th biennial southern tree improvement conference, June 9–12 1997. Southern Tree Improvement Committee, Orlando, Florida, pp. 1–15Google Scholar
  92. Tibbits W, Reid J (1987) Frost resistance in Eucalyptus nitens (Deane & Maiden) Maiden: physiological aspects of hardiness. Aust J Bot 35:235–250CrossRefGoogle Scholar
  93. Tran LSP et al (2007) Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis. Plant J 49:46–63CrossRefPubMedGoogle Scholar
  94. Turnbull J, Eldridge K (1983) The natural environment of Eucalyptus as the basis for selecting frost resistant species. In: Proceedings of IUFRO/AFOCEL symposium on frost resistant Eucalyptus. (26th – 30th September 1983, Bordeaux, France). p. 43–62.Google Scholar
  95. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40:e115. doi:10.1093/nar/gks596 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Van Buskirk HA, Thomashow MF (2006) Arabidopsis transcription factors regulating cold acclimation. Physiol Plant 126:72–80CrossRefGoogle Scholar
  97. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:research0034CrossRefPubMedPubMedCentralGoogle Scholar
  98. Villar E, Klopp C, Noirot C, Novaes E, Kirst M, Plomion C, Gion J-M (2011) RNA-Seq reveals genotype-specific molecular responses to water deficit in Eucalyptus. BMC Genomics 12:538CrossRefPubMedPubMedCentralGoogle Scholar
  99. Vining KJ, Contreras RN, Ranik M, Strauss SH (2012) Genetic methods for mitigating invasiveness of woody ornamental plants: research needs and opportunities. HortScience. 47:1210–1216.Google Scholar
  100. Wang L et al (2014) Genome-wide identification of WRKY family genes and their response to cold stress in Vitis vinifera. BMC Plant Biol 14:103CrossRefPubMedPubMedCentralGoogle Scholar
  101. Wang X-C et al (2013) Global transcriptome profiles of Camellia sinensis during cold acclimation. BMC Genomics 14:415CrossRefPubMedPubMedCentralGoogle Scholar
  102. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1) England:57–63. doi:10.1038/nrg2484 CrossRefPubMedPubMedCentralGoogle Scholar
  103. Weiser C (1970) Cold resistance and injury in woody plants knowledge of hardy plant adaptations to freezing stress may help us to reduce winter damage. Science 169:1269–1278CrossRefPubMedGoogle Scholar
  104. Welling A, Palva ET (2006) Molecular control of cold acclimation in trees. Physiol Plant 127:167–181CrossRefGoogle Scholar
  105. Winfield MO, Lu C, Wilson ID, Coghill JA, Edwards KJ (2010) Plant responses to cold: transcriptome analysis of wheat. Plant Biotechnol J 8:749–771CrossRefPubMedGoogle Scholar
  106. Wisniewski M, Close TJ, Artlip T, Arora R (1996) Seasonal patterns of dehydrins and 70-kDa heat-shock proteins in bark tissues of eight species of woody plants. Physiol Plant 96:496–505CrossRefGoogle Scholar
  107. Wisniewski M, Nassuth A, Teulieres C, Marque C, Rowland J, Cao PB, Brown A (2014) Genomics of cold hardiness in woody plants. Crit Rev Plant Sci 33:92–124CrossRefGoogle Scholar
  108. Wisniewski M, Norelli J, Bassett C, Artlip T, Macarisin D (2011) Ectopic expression of a novel peach (Prunus persica) CBF transcription factor in apple (Malus × domestica) results in short-day induced dormancy and increased cold hardiness. Planta 233:971–983CrossRefPubMedGoogle Scholar
  109. Wright IJ, Reich P, Westoby M (2001) Strategy shifts in leaf physiology, structure and nutrient content between species of high-and low-rainfall and high-and low-nutrient habitats. Funct Ecol 15:423–434CrossRefGoogle Scholar
  110. Yakovlev IA, Asante DK, Fossdal CG, Partanen J, Junttila O, Johnsen Ø (2008) Dehydrins expression related to timing of bud burst in Norway spruce. Planta 228:459–472CrossRefPubMedGoogle Scholar
  111. Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13:134. doi:10.1186/1471-2105-13-134 CrossRefPubMedPubMedCentralGoogle Scholar
  112. Zhao Z, Tan L, Dang C, Zhang H, Wu Q, An L (2012) Deep-sequencing transcriptome analysis of chilling tolerance mechanisms of a subnival alpine plant. Chorispora bungeana BMC plant biology 12:222CrossRefPubMedGoogle Scholar
  113. Zheng C, Zhao L, Wang Y, Shen J, Zhang Y, Jia S, et al. (2015) Integrated RNA-Seq and sRNASeq analysis identifies chilling and freezing responsive key molecular players and pathways in tea plant (Camellia sinensis). PLoS One 10(4):e0125031Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Centro de BiotecnologíaUniversidad de ConcepciónConcepciónChile
  2. 2.Facultad de Ciencias ForestalesUniversidad de ConcepciónConcepciónChile
  3. 3.Facultad de Ciencias BiológicasUniversidad de ConcepciónConcepciónChile
  4. 4.Forestal Mininco S.A.Los AngelesChile

Personalised recommendations