Skip to main content

Advertisement

Log in

Centenary coppicing maintains high levels of genetic diversity in a root resprouting oak (Quercus pyrenaica Willd.)

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Studies disentangling the anthropogenic influences of traditional forest uses are crucial to assess the current conservation value of cultural landscapes. By promoting asexual regeneration, centenary coppicing in the predominantly root resprouter Quercus pyrenaica is assumed to have reduced genetic diversity levels contributing to the decline of abandoned coppices and the common lack of acorn production. This work aims to test the widespread assumption that historical coppicing in Q. pyrenaica has caused depleted levels of genetic diversity. Seven microsatellite markers were used to assess clonal structure and population genetic diversity levels in six abandoned coppices of Q. pyrenaica, which were compared to three open woodlands in national parks in Spain. Asexual regeneration was higher in coppices, leading to more frequent and larger clonal assemblies. Clonal diversity parameters (genotypic richness and proportion of unique genotypes) were significantly lower in coppices, although density of genotypes per surface area and levels of population genetic diversity were comparable to those observed in open parklands. Heterogenic clonal structures were found both within and among stands, hindering the inference of concrete anthropogenic disturbances. Despite promoting asexual reproduction, coppicing maintains high levels of genotypic and genetic diversity and allows the incorporation of new genotypes by seed recruitment. The natural resprouting capacity of Q. pyrenaica preserved the species in face of long-lasting anthropogenic disturbances, fostering ecosystem resilience and harbouring high conservation values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Agnoletti M (2006) The conservation of cultural landscapes. CAB International, Wallingford

    Book  Google Scholar 

  • Alfaro RI, Fady B, Vendramin GG, Dawson IK, Fleming RA, Sáenz-Romero C, Lindig-Cisneros RA, Murdock T, Vinceti B, Navarro CM, Skrøppa T, Baldinelli G, El-Kassaby YA, Loo J (2014) The role of forest genetic resources in responding to biotic and abiotic factors in the context of anthropogenic climate change. For Ecol Manag 333:76–87

    Article  Google Scholar 

  • Ally D, Ritland K, Otto SP (2008) Can clone size serve as a proxy for clone age? An exploration using microsatellite divergence in Populus tremuloides. Mol Ecol 17:4897–4911

    Article  CAS  PubMed  Google Scholar 

  • Ally D, Ritland K, Otto SP (2010) Aging in a long-lived clonal tree. PLoS Biol 8:e1000454. doi:10.1371/journal.pbio.1000454

    Article  PubMed  PubMed Central  Google Scholar 

  • Aravanopoulos FA, Drouzas AD, Alizoti PG (2001) Electrophoretic and quantitative variation in chestnut (Castanea sativa Mill.) in Hellenic populations in old-growth natural and coppice stands. For Snow Landsc Res 76:429–434

    Google Scholar 

  • Arnaud-Haond S, Belkhir K (2007) Genclone 1.0: a new program to analyse genetics data on clonal organisms. Mol Ecol Notes 7:15–17

    Article  CAS  Google Scholar 

  • Arnaud-Haond S, Duarte CM, Alberto F, Serrão EA (2007) Standardizing methods to address clonality in population studies. Mol Ecol 16:5115–5139

    Article  CAS  PubMed  Google Scholar 

  • Balloux F, Lehmann L, de Meeus T (2003) The population genetics of clonal and partially clonal diploids. Genetics 164:1635–1644

    PubMed  PubMed Central  Google Scholar 

  • Barrett SCH (2002) The evolution of plant sexual diversity. Nature Rev Genetics 3:274–284

    Article  CAS  Google Scholar 

  • Bellingham PJ, Sparrow AD (2000) Resprouting as a life history strategy in woody plant communities. Oikos 89:409–416

    Article  Google Scholar 

  • Blondel J (2006) The ‘design’ of Mediterranean landscapes: a millennial story of humans and ecological systems during the historic period. Hum Ecol 34:713–729

    Article  Google Scholar 

  • Bond WJ, Midgley JJ (2001) Ecology of sprouting in woody plants: the persistence niche. Trends Ecol Evol 16:45–51

    Article  CAS  PubMed  Google Scholar 

  • Bond WJ, Midgley JJ (2003) The evolutionary ecology of sprouting in woody plants. Int J Plant Sci 164:S103–S114

    Article  Google Scholar 

  • Booy G, Hendriks RJJ, Smulders MJM, van Groenendael JM, Vosman B (2000) Genetic diversity and the survival of populations. Plant Biol 2:379–395

    Article  Google Scholar 

  • Bradshaw RHW (2004) Past anthropogenic influence on European forests and some possible genetic consequences. For Ecol Manag 197:203–212

    Article  Google Scholar 

  • Bradshaw RHW, Hannon GE, Lister AM (2003) A long-term perspective on ungulate vegetation interactions. For Ecol Manag 181:267–280

    Article  Google Scholar 

  • Bravo JA, Roig S, Serrada R (2008) Selvicultura en montes bajos y medios de Quercus ilex L., Q. pyrenaica Willd. y Q. faginea Lam. In: Serrada R, Montero G, Reque JA (eds) Compendio de Selvicultura Aplicada en España. Instituto Nacional de Investigaciones Agrarias & FUCOVASA, Madrid, pp 657–744

  • Buckley P, Mills J (2015) Coppice silviculture: from the Mesolithic to the 21st century. In: Kirby K, Watkins C (eds) Europe’s changing woods and forests: from wildwood to managed landscapes. Cabi International, Oxfordshire, UK, pp 77–92

  • Cañellas I, del Río M, Roig S, Montero G (2004) Growth response to thinning in Quercus pyrenaica Willd. coppice stands in Spanish central mountain. Ann For Sci 61:243–250

    Article  Google Scholar 

  • Carrión JS, Fernández S, González-Sampériz P, Gil-Romera G, Badal E, Carrión-Marco Y, López-Merino L, López-Sáez JA, Fierro E, Burjachs F (2010) Expected trends and surprises in the Lateglacial and Holocene vegetation history of the Iberian Peninsula and Balearic Islands. Review Palaeobot Palyno 162:458–475

    Article  Google Scholar 

  • Christensen NL, Bartuska AM, Brown JH et al (1996) The report of the Ecological Society of America committee on the scientific basis for ecosystem management. Ecol Appl 6:665–691

    Article  Google Scholar 

  • Chung MG, Epperson BK (1999) Spatial genetic structure of clonal and sexual reproduction in populations of Adenophora grandiflora (Campanulaceae). Evolution 53:1068–1078

    Article  CAS  Google Scholar 

  • Clarke PJ, Lawes MJ, Midgley JJ (2010) Resprouting as a key functional trait in woody plants–challenges to developing new organizing principles. New Phytol 188:651–654

    Article  PubMed  Google Scholar 

  • Comisión (1870) Comisión de la Flora Forestal Española. Resumen de los trabajos verificados por la misma durante los años 1867 y 1868. Tomo I. Madrid

  • Connor SE (2009) Human impact—the last nail in the coffin for ancient plants? J Biogeogr 36:485–486

    Article  Google Scholar 

  • Corcuera L, Camarero JJ, Sisó S, Gil-Pelegrín E (2006) Radial-growth and wood-anatomical changes in overaged Quercus pyrenaica coppice stands: functional responses in a new Mediterranean landscape. Trees-Struct Funct 20:91–98

    Article  Google Scholar 

  • Costa Tenorio M, Morla Juaristi C, Sainz Ollero H (eds) (1998) Los bosques ibéricos. Una interpretación geobotánica. Planeta, Barcelona

  • Cottrell JE, Munro RC, Tabbener HE, Milner AD, Forrest GI, Lowe AJ (2003) Comparison of fine-scale genetic structure using nuclear microsatellites within two British oakwoods differing in population history. For Ecol Manag 176:287–303

    Article  Google Scholar 

  • de Nascimento L, Willis KJ, Fernández-Palacios JM, Criado C, Whittaker RJ (2009) The long-term ecology of the lost forests of La Laguna, Tenerife (Canary Islands). J Biogeogr 36:499–514

    Article  Google Scholar 

  • Del Tredici P (2001) Sprouting in temperate trees: a morphological and ecological review. Bot Rev 67:121–140

    Article  Google Scholar 

  • DGCN 2006. 3er Inventario Forestal Nacional. Ministerio de Agricultura, Alimentación y Medio Ambiente (3rd Spanish National Forest Inventory, Ministry of Agriculture, Food and Environment). http://www.gbif.es/ic_colecciones.php?ID_Coleccion=10105. Accessed 2 May 2016

  • Dolezal J, Song JS, Altman J, Janecek S, Cerny T, Srutek M, Kolbek J (2009) Tree growth and competition in a post-logging Quercus mongolica forest on Mt. Sobaek, South Korea. Ecol Res 24:281–290

    Article  Google Scholar 

  • Dorken ME, Eckert CG (2001) Severely reduced sexual reproduction in northernpopulations of a clonal plant, Decodon verticillatus (Lythraceae). J Ecol 89:339–350

    Article  Google Scholar 

  • Dostálek J, Frantík T, Lukášová M (2011) Genetic differences within natural and planted stands of Quercus petraea. Cent Eur J Biol 6:597–605

    Google Scholar 

  • Dow BD, Ashley MV, Howe HF (1995) Characterization of highly variable (GA/CT)n microsatellites in the bur oak, Quercus macrocarpa. Theor Appl Genet 91:137–141

    Article  CAS  PubMed  Google Scholar 

  • Dutech C, Sork VL, Irwin AJ, Smouse PE, Davis FW (2005) Gene flow and fine-scale genetic structure in a wind-pollinated tree species, Quercus lobata (Fagaceaee). Am J Bot 92:252–261

    Article  CAS  PubMed  Google Scholar 

  • Geburek T, Konrad H (2008) Why the conservation of forest genetic resources has not worked. Conserv Biol 22:267–274

    Article  PubMed  Google Scholar 

  • Gorelick R, Heng HHQ (2010) Sex reduces genetic variation: a multidisciplinary review. Evolution 65:1088–1098

    Article  PubMed  Google Scholar 

  • Grove AT, Rackham O (2001) The nature of Mediterranean Europe. An ecological history. Yale University Press, New Haven

    Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–120

    Article  Google Scholar 

  • Honnay O, Bossuyt B (2005) Prolonged clonal growth: escape route or route to extinction? Oikos 108:427–432

    Article  Google Scholar 

  • Jacquemyn H, Honnay O (2008) Mating system evolution under strong clonality: towards self-compatibility or self-incompatibility? Evol Ecol 22:483–486

    Article  Google Scholar 

  • Jump AS, Marchant R, Peñuelas J (2008) Environmental change and the option value of genetic diversity. Trends Plant Sci 14:51–58

    Article  PubMed  Google Scholar 

  • Kampfer S, Lexer C, Glössl J, Steinkellner H (1998) Characterization of (GA)n microsatellite loci from Quercus robur. Hereditas 129:183–186

    Article  CAS  Google Scholar 

  • Koskela J, Lefèvre F, Schueler S, Kraigher H, Olrik DC, Hubert J, Longauer R, Bozzano M, Yrjänä L, Alizoti P, Rotach P, Vietto L, Bordács S, Myking T, Eysteinsson T, Souvannavong O, Fady B, BDE C, Heinze B, von Wühlisch G, Ducousso A, Ditlevsen B (2013) Translating conservation genetics into management: pan-European minimum requirements for dynamic conservation units of forest tree genetic diversity. Biol Conserv 157:39–49

    Article  Google Scholar 

  • Lefèvre F (2004) Human impacts on forest genetic resources in the temperate zone: an updated review. For Ecol Manag 197:257–271

    Article  Google Scholar 

  • Lefèvre F (2007) Conservation of forest genetic resources under climate change: the case of France. In: Koskela J, Buck A, Teissier du Cros E (eds) Climate change and forest genetic diversity: implications for sustainable forest management in Europe. Biodiversity International, Rome, pp 95–101

  • López Estébanez N, Gómez Mediavilla G, Gómez Mendoza J, Madrazo García de Lomana G, Sáez Pombo E (2010) Forest dynamics in the Spanish central mountain range. In: Rotherham D, Agnoletti M, Handley C (eds) Landscape archaeology and ecology, volume 8: end of tradition? Aspects of commons & cultural severance. Wildtrack Publishing, Sheffield, pp 119–131

  • Mariette S, Cottrell J, Csaikl UM, Goikoechea P, König A, Lowe AJ, Van Dam BC, Barreneche T, Bodénès C, Streiff R, Burg K, Groppe K, Munro RC, Tabbener H, Kremer A (2002) Comparison of levels of genetic variation detected with AFLP and microsatellite markers within and among mixed Q. petraea (Matt.) Liebl. and Q. robur L. stands. Silvae Genet 51:72–79

    Google Scholar 

  • Massa SI, Paulino CM, Serrão EA, Duarte CM, Arnaud-Haond S (2013) Entangled effects of allelic and clonal (genotypic) richness in the resistance and resilience of experimental populations of the seagrass Zostera noltii to diatom invasion. BMC Ecol 13:39. doi:10.1186/1472-6785-13-39

    Article  PubMed  PubMed Central  Google Scholar 

  • Mattioni C, Cherubini M, Micheli E, Villani F, Bucci G (2008) Role of domestication in shaping Castanea sativa genetic variation in Europe. Tree Genet Genom 4:563–574

    Article  Google Scholar 

  • Meiggs R (1982) Trees and timber in the ancient Mediterranean world. Oxford University Press, Oxford

    Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance for small number of individuals. Genetics 89:583–590

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen R, Tarpy DR, Kern Reeve H (2003) Estimating effective paternity number in social insects and the effective number of alleles in a population. Mol Ecol 12:3157–3164

    Article  PubMed  Google Scholar 

  • Olazábal L (1883) Ordenación y Valoración de Montes. Imprenta de Moreno y Rojas, Madrid

    Google Scholar 

  • Paffetti D, Travaglini D, Buonamici A, Nocentini S, Vendramin GG, Giannini R, Vettori C (2012) The influence of forest management on beech (Fagus sylvatica L.) stand structure and genetic diversity. For Ecol Manag 284:34–44

    Article  Google Scholar 

  • Pardo F, Gil L (2005) The impact of traditional land use on woodlands: a case study in the Spanish Central System. J Hist Geogr 31:390–408

    Article  Google Scholar 

  • Parks JC, Werth CR (1993) A study of spatial features of clones in a population of Bracken Fern, Pteridium aquilinum (Dennstaedtiaceae). Am J Bot 80:537–544

    Article  Google Scholar 

  • Pautasso M (2009) Geographical genetics and the conservation of forest trees. Perspect Plant Ecol 11:157–189

    Article  Google Scholar 

  • Piotti A, Leonardi S, Heuertz M, Buiteveld J, Geburek T, Gerber S, Kramer K, Vettori C, Vendramin GG (2013) Within-population genetic structure in beech (Fagus sylvatica L.) stands characterized by different disturbance histories: does forest management simplify population substructure? PLoS One 8:e73391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • R Core Team (2015). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/

  • Rackham O (2003) Ancient woodland: its history, vegetation and uses in England. Castlepoint Press, Colvend

    Google Scholar 

  • Ratnam W, Rajora OP, Finkeldey R et al (2014) Genetic effects of forest management practices: global synthesis and perspectives. For Ecol Manag 333:52–65

    Article  Google Scholar 

  • Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237

    Article  Google Scholar 

  • Reusch TBH, Ehlers A, Hämmerli A, Worm B (2005) Ecosystem recovery after climatic extremes enhanced by genotypic diversity. PNAS 102:2826–2831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rotherham ID (2011) The implications of cultural severance in managing vegetation for conservation. Asp Appl Biol 108:95–104

    Google Scholar 

  • Ruiz de la Torre J (2006) Flora Mayor. Organismo Autónomo de Parques Nacionales. Dirección General para la Biodiversidad, Madrid

  • Sáez E (1953) Los fueros de Sepúlveda. Diputación Provincial de Segovia, Segovia

    Google Scholar 

  • Sallé A, Nageleisen L-M, Lieutier F (2014) Bark and wood boring insects involved in oak declines in Europe: current knowledge and future prospects in a context of climate change. For Ecol Manag 328:79–93

    Article  Google Scholar 

  • Salomón R, Valbuena-Carabaña M, Gil L, González-Doncel I (2013) Clonal structure influences stem growth in Quercus pyrenaica Willd. coppices: bigger is less vigorous. For Ecol Manag 296:108–118

    Article  Google Scholar 

  • Salomón R, Rodríguez-Calcerrada J, Zafra E, Morales-Molino C, Rodríguez-García A, González-Doncel I, Oleksyn J, Zytkowiak R, López R, Miranda JC, Gil L, Valbuena-Carabaña M (2016) Unearthing the roots of degradation of Quercus pyrenaica coppices: a root-to-shoot imbalance caused by historical management? For Ecol Manag 363:200–211

  • Sánchez Palomares O, Roig Gómez S, Del Río Gaztelurrutia M, Rubio Sánchez QA, Gandullo Gutiérrez JM (2008) Las estaciones ecológicas actuales y potenciales de los rebollares españoles. Monografías INIA: Serie Forestal n° 17. Instituto Nacional de Investigaciones Agrarias & Ministerio de Educación y Ciencia, Madrid

  • Schaberg PG, DeHayes DH, Hawley GJ, Nijensohn SE (2008) Anthropogenic alterations of genetic diversity within tree populations: implications for forest ecosystem resilience. For Ecol Manag 256:855–862

    Article  Google Scholar 

  • Serrano L (1910) Becerro Gótico de Cardeña. In: Padres Benedictinos de Silos (eds) Fuentes para la Historia de Castilla, Tomo III. Silos, Valladolid

  • Sjölund MJ, Jump AS (2013) The benefits and hazards of exploiting vegetative regeneration for forest conservation management in a warming world. Forestry 86:503–513

    Article  Google Scholar 

  • Sjölund MJ, Jump AS (2015) Coppice management of forests impacts spatial genetic structure but not genetic diversity in European beech (Fagus sylvatica L.). For Ecol Manag 336:65–71

    Article  Google Scholar 

  • Steinkellner H, Fluch S, Turetschek E, Lexer C, Streiff R, Kremer A, Burg K, Glössl J (1997) Identification and characterization of (GA/CT)n microsatellite loci from Quercus petraea. Plant Mol Biol 33:1093–1096

    Article  CAS  PubMed  Google Scholar 

  • Stenberg P, Ludmark M, Saura A (2003) MLGsim: a program for detecting clones using a simulation approach. Mol Ecol Notes 3:329–331

    Article  CAS  Google Scholar 

  • Valbuena-Carabaña M, Gil L (2013) Genetic resilience in a historically profited root sprouting oak (Quercus pyrenaica Willd.) at its southern boundary. Tree Genet Genomes 9:1129–1142

    Article  Google Scholar 

  • Valbuena-Carabaña M, González-Martínez SC, Hardy OJ, Gil L (2007) Fine-scale spatial genetic structure in mixed oak stands with different levels of hybridization. Mol Ecol 16:1207–1219

    Article  PubMed  Google Scholar 

  • Valbuena-Carabaña M, González-Martínez SC, Gil L (2008) Coppice forests and genetic diversity: a case study in Quercus pyrenaica Willd. from Central Spain. For Ecol Manag 254:225–232

    Article  Google Scholar 

  • Valbuena-Carabaña M, López de Heredia U, Fuentes-Utrilla P, González-Doncel I, Gil L (2010) Historical and recent changes in the Spanish forests: a socio-economic process. Rev Palaeobot Palyno 162:492–506

    Article  Google Scholar 

  • van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Vesk PA (2006) Plant size and resprouting ability: trading tolerance and avoidance of damage? J Ecol 94:1027–1034

    Article  Google Scholar 

  • Whitham TG, Bailey JK, Schweitzer JA, Shuster SM, Bangert RK, LeRoy CJ, Lonsdorf EV, Allan GJ, DiFazio SP, Potts BM, Fischer DG, Gehring CA, Lindroth RL, Marks JC, Hart SC, Wimp GM, Wooley SC (2006) A framework for community and ecosystem genetics: from genes to ecosystems. Nat Rev Genet 7:510–523

    Article  CAS  PubMed  Google Scholar 

  • Whitham TG, Gehring CA, Evans LM, LeRoy CJ, Bangert RK, Schweitzer JAAllan GJ, Barbour RC, Fischer DG, Potts BM, Bailey JK (2010) A community and ecosystem genetics approach to conservation biology and management. In: DeWoody A, Bickham J, Michler C, Nichols K, Rhodes G, Woeste K (eds) Molecular approaches in natural resource conservation and management. University Press, Cambridge, pp 50–73

  • Ximénez de Embún J (1961) El monte bajo. Ministerio de Agricultura, Madrid

    Google Scholar 

  • Young AG, Hill JH, Murray BG, Peakall R (2002) Breeding system, genetic diversity and clonal structure in the sub-alpine forb Rutidosis leiolepis F. Muell. (Asteraceae). Biol Conserv 106:71–78

    Article  Google Scholar 

  • Zhang X, Korpelainen H, Li C (2006) Microsatellite variation of Quercus aquifolioides populations at varying altitudes in the Wolong Natural Reserve of China. Silva Fennica 40:407–415

    Google Scholar 

  • Zhu W-Z, Xiang J-S, Wang S-G, Li M-H (2012) Resprouting ability and mobile carbohydrate reserves in an oak shrubland decline with increasing elevation on the eastern edge of the Qinghai–Tibet Plateau. For Ecol Manag 278:118–126

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to E. Zafra for her inestimable help in laboratory works and to S. Fairén and V. Fernández for revising the English language. We also wish to thank M. Zabal-Aguirre for his help in analysing the data in R and A. Gómez and J. Donés for their kind support in field activities within the national parks. Thanks are extended to two anonymous reviewers whose comments significantly improved the manuscript. This work was supported by the Autonomous Organism of Spanish National Parks through OAPN/030/2007, OAPN/047/2010 projects and the OAPN Prop23/10 JD/pl contract and by the Autonomous Community of Madrid through the CAM P2009/AMB-1668 project.

Data archiving statement

Raw microsatellite data will be sent to the TreeGenes database.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Valbuena-Carabaña.

Additional information

Communicated by A. Kremer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valbuena-Carabaña, M., Gil, L. Centenary coppicing maintains high levels of genetic diversity in a root resprouting oak (Quercus pyrenaica Willd.). Tree Genetics & Genomes 13, 28 (2017). https://doi.org/10.1007/s11295-017-1105-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-017-1105-4

Keywords