Skip to main content
Log in

Molecular genetic diversity and association mapping of nut and kernel traits in Slovenian hazelnut (Corylus avellana) germplasm

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

European hazelnut (Corylus avellana L.), cultivated in several areas of the world including Europe, Anatolia, and the USA, is an economically important nut crop due to its high mineral, oleic acid, amino acid, and phenolic compound content and pleasant flavor. This study examined molecular genetic diversity and population structure of 54 wild accessions and 48 cultivars from the Slovenian national hazelnut collection using amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers. Eleven AFLP primer combinations and 49 SSR markers yielded 532 and 504 polymorphic fragments, respectively. As expected for a wind-pollinated, self-incompatible species, levels of genetic diversity were high with cultivars and wild accessions having mean dissimilarity values of 0.50 and 0.60, respectively. In general, cultivars and wild accessions clustered separately in dendrogram, principal coordinate, and population structure analyses with regional clustering of the wild material. The accessions were also characterized for ten nut and seven kernel traits and some wild accessions were shown to have breeding potential. Morphological principal component analysis showed distinct clustering of cultivars and wild accessions. An association mapping panel composed of 64 hazelnut cultivars and wild accessions had considerable variation for the nut and kernel quality traits. Morphological and molecular data were associated to identify markers controlling the traits. In all, 49 SSR markers were significantly associated with nut and kernel traits [P < 0.0001 and LD value (r 2) = 0.15–0.50]. This work is the first use of association mapping in hazelnut and has identified molecular markers associated with important quality parameters in this important nut crop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdurakhmonov IY, Kohel RJ, Yu JZ, Pepper AE, Abdullaev AA, Kushanov FN, Abdukarimov A (2008) Molecular diversity and association mapping of fiber quality traits in exotic G. hirsutum L. germplasm. Genomics 92:478–487

    Article  CAS  PubMed  Google Scholar 

  • Bacchetta L, Avanzato D, Di Giovanni B, Botta R, Boccacci P, Drogoudi P, Metzidakis I, Rovira M, Sarraquigne JP, Silva AP, Solar A, Spera D (2014) The reorganisation of European hazelnut genetic resources in the SAFENUT (AGRI GEN RES) project. Acta Hort 1052:67–74

    Article  Google Scholar 

  • Balta MF, Yarılgaç T, Aşkın MA, Kuçuk M, Balta F, Özrenk K (2006) Determination of fatty acid compositions, oil contents and some quality traits of hazelnut genetic resources grown in eastern Anatolia of Turkey. J Food Compos Anal 19:681–686

    Article  CAS  Google Scholar 

  • Bassil NV, Botta R, Mehlenbacher SA (2005) Additional microsatellite markers of the European hazelnut. Acta Hortic 686:105

    Article  CAS  Google Scholar 

  • Bassil N, Boccacci P, Botta R, Postman J, Mehlenbacher SA (2013) Nuclear and chloroplast microsatellite markers to assess genetic diversity and evolution in hazelnut species, hybrids and cultivars. Gen Res Crop Evol 60:543–568

    Article  CAS  Google Scholar 

  • Beltramo C, Valentini N, Portis E, Torello D, Boccacci P, Angelica M, Botta R (2016) Genetic mapping and QTL analysis in European hazelnut (Corylus avellana L.). Mol Breed 36:27

    Article  Google Scholar 

  • Boccacci P, Botta R (2009) Investigating the origin of hazelnut (Corylus avellana L.) cultivars using chloroplast microsatellites. Gen Res Crop Evol 56:851–859

    Article  CAS  Google Scholar 

  • Boccacci P, Botta R (2010) Microsatellite variability and genetic structure in hazelnut (Corylus avellana L.) cultivars from different growing regions. Sci Hortic 124:128–133

    Article  CAS  Google Scholar 

  • Boccacci P, Akkak A, Bassil NV, Mehlenbacher SA, Botta R (2005) Characterization and evaluation of microsatellite loci in European hazelnut (Corylus avellana L.) and their transferability to other Corylus species. Mol Ecol Notes 5:934–937

    Article  CAS  Google Scholar 

  • Boccacci P, Akkak A, Botta R (2006) DNA typing and genetic relationship among European hazelnut (Corylus avellana L.) cultivars using microsatellite markers. Genome 49:598–611

    Article  CAS  PubMed  Google Scholar 

  • Boccacci P, Botta R, Rovira M (2008) Genetic diversity of hazelnut (Corylus avellana L.) germplasm in northeastern Spain. Hort Sci 43:667–672

    Google Scholar 

  • Boccacci P, Aramini M, Valentini N, Bacchetta L, Rovira M, Drogoudi P, Silva AP, Solar A, Calizzano F, Erdogan V, Cristoferi V, Ciarmiello LF, Contessa C, Ferreira JJ, Marra FP, Botta R (2013) Molecular and morphological diversity of on-farm hazelnut (Corylus avellana L.) landraces from southern Europe and their role in the origin and diffusion of cultivated germplasm. Tree Genet Genomes 9:1465–1480

    Article  Google Scholar 

  • Boccacci P, Beltramo C, Prando MS, Lembo A, Sartor C, Mehlenbacher SA, Botta R, Marinoni DT (2015) In silico mining, characterization and cross-species transferability of EST-SSR markers for European hazelnut (Corylus avellana L.). Mol Breed 35:1–14

    Article  CAS  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Campa A, Trabanco N, Pérez-Vega E, Rovira M, Ferreira JJ (2011) Genetic relationship between cultivated and wild hazelnuts (Corylus avellana L.) collected in northern Spain. Plant Breed 130:360–366

    Article  CAS  Google Scholar 

  • Celik I, Camci H, Kose A, Kosar FC, Doganlar S, Frary A (2016) Molecular genetic diversity and association mapping of morphine content and agronomic traits in Turkish opium poppy (Papaver somniferum) germplasm. Mol Breed 36(4):1–13

  • Cristofori V, Ferramondo S, Bertazza G, Bignami C (2008) Nut and kernel traits and chemical composition of hazelnut (Corylus avellana L.) cultivars. J Sci Food Agric 88:1091–1098

    Article  CAS  Google Scholar 

  • Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302

    Article  Google Scholar 

  • Earl DA, von Holdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Ferrari M, Gori M, Monnanni R, Buiatti M, Scarascia Mugnozza GT, De Pace C (2004) DNA fingerprinting of Corylus avellana L. accessions revealed by AFLP molecular markers. Acta Hortic 686:125–134

    Google Scholar 

  • Ferreira JJ, Garcia-Gonzalez C, Tous J, Rovira M (2010) Genetic diversity revealed by morphological traits and ISSR markers in hazelnut germplasm from northern Spain. Plant Breed 129:435–441

    Article  CAS  Google Scholar 

  • Food and Agriculture Organization of the United Nations, FAOSTAT (2013) http://www.fao.org/corp/statistics/en. Accessed 07.07.2014

  • Fulton TM, Chunwongse J, Tanksley SD (1995) Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol Biol Rep 13:207–207

  • Galderisi U, Cipollaro M, Di Bernanrdo G, De Masi L, Galano G, Cascino A (1999) Identification of hazelnut (Corylus avellana L.) cultivars by RAPD analysis. Plant Cell Rep 18:652–655

    Article  CAS  Google Scholar 

  • Gao H, Williamson S, Bustamante CD (2007) A Markov chain Monte Carlo approach for joint inference of population structure and inbreeding rates from multilocus genotype data. Genetics 176:1635–1651

    Article  PubMed  PubMed Central  Google Scholar 

  • Gökirmak T, Mehlenbacher SA, Bassil NV (2009) Characterization of European hazelnut (Corylus avellana L.) cultivars using SSR markers. Genet Resour Crop Evol 56:147–172

    Article  Google Scholar 

  • Gómez G, Álvarez MF, Mosquera T (2011) Association mapping, a method to detect quantitative trait loci: statistical bases. Agronomía Colombiana 29:367–376

    Google Scholar 

  • Gurcan K, Mehlenbacher SA (2010) Development of microsatellite marker loci for European hazelnut (Corylus avellana L.) from ISSR fragments. Mol Breed 26:551–559

    Article  Google Scholar 

  • Gurcan K, Mehlenbacher SA, Botta R, Boccacci P (2010a) Development, characterization, segregation, and mapping of microsatellite markers for European hazelnut (Corylus avellana L.) from enriched genomic libraries and usefulness in genetic diversity studies. Tree Genet Genomes 6:513–531

    Article  Google Scholar 

  • Gurcan K, Mehlenbacher SA, Erdogan V (2010b) Genetic diversity in hazelnut (Corylus avellana L.) cultivars from Black Sea countries assessed using SSR markers. Plant Breed 129:422–434

    CAS  Google Scholar 

  • Kafkas S, Doğan Y, Sabır A, Turan A, Seker H (2009) Genetic characterization of hazelnut (Corylus avellana L.) cultivars from Turkey using molecular markers. Hortscience 44:1557–1561

    Google Scholar 

  • Khan MA, Korban SS (2012) Association mapping in forest trees and fruit crops. J Exp Bot 63:4045–4060

    Article  CAS  PubMed  Google Scholar 

  • Leinemann L, Steiner W, Hosius B, Kuchma O, Arenhövel W, Fussi B, Finkeldey R (2013) Genetic variation of chloroplast and nuclear markers in natural populations of hazelnut (Corylus avellana L.) in Germany. Plant Syst Evol 299:369–378

    Article  CAS  Google Scholar 

  • Martins S, Simões F, Mendonça D, Matos J, Silva AP, Carnide V (2013) Chloroplast SSR genetic diversity indicates a refuge for Corylus avellana in northern Portugal. Gen Res Crop Evol 60:1289–1295

    Article  CAS  Google Scholar 

  • Martins S, Simões F, Matos J, Silva AP, Carnide V (2014) Genetic relationship among wild, landraces and cultivars of hazelnut (Corylus avellana L.) from Portugal revealed through ISSR and AFLP markers. Plant Syst Evol 300:1035–1046

    Article  Google Scholar 

  • Martins S, Simões F, Mendonça D, Matos J, Silva AP, Carnide V (2015) Western European wild and landraces hazelnuts evaluated by SSR markers. Plant Mol Biol Rep 1–9

  • Mehlenbacher SA, Brown RN, Nouhra ER, Gokirmak T, Bassil NV, Kubisiak TL (2006) A genetic linkage map for hazelnut (Corylus avellana L.) based on RAPD and SSR markers. Genome 49:122–133

    CAS  PubMed  Google Scholar 

  • Miaja ML, Vallania R, Me C, Akkak O, Nassi O, Lepori G (2001) Varietal characterization in hazelnut by RAPD markers. Acta Hortic 556:247–250

    Article  CAS  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci U S A 70:3321–3323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norusis MJ (2010) PASW statistics 18 advanced statistical procedures. Prentice Hall Press, Upper Saddle River, NJ

    Google Scholar 

  • Ozdemir F, Akinci I (2004) Physical and nutritional properties of four major commercial Turkish hazelnut varieties. J Food Eng 63:341–347

    Article  Google Scholar 

  • Perrier X, Jacquemoud-Collet JP (2006) DARwin software. Available: http://darwin.cirad.fr/darwin

  • Pritchard JK, Stephens M, Rosenberg NA, Donnelly P (2000) Association mapping in structured populations. Am J Hum Genet 67:170–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roldàn-Ruiz I, Dendauw J, Van Bockstaele E, Depicker A, De Loose M (2000) AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Mol Breed 6:125–134

    Article  Google Scholar 

  • Romero A, Tous J, Durfort M, Rius M (2003) Histology of hazelnut (Corylus avellana L.) kernel affected by brown spots in kernel cavity physiopathy. Span J Agr Res 1:47–53

    Article  Google Scholar 

  • Slatnar A, Mikulic-Petkovsek M, Stampar F, VebericR SA (2014) HPLC-MS identification and quantification of phenolic compounds in hazelnut kernels, oil and bagasse pellets. Food Res Int 64:783–789

    Article  CAS  Google Scholar 

  • Solar A, Stampar F (2009) Performance of hazelnut cultivars from Oregon in northeastern Slovenia. HortTechnology 19:653–659

    Google Scholar 

  • Solar A, Stampar F (2011) Characterisation of selected hazelnut cultivars: phenology, growing and yielding capacity, market quality and nutraceutical value. J Sci Food Agr 91:1205–1212

    Article  CAS  Google Scholar 

  • Stich B, Melchinger AE, Frisch M, Maurer HP, Heckenberger M, Reif JC (2005) Linkage disequilibrium in European elite maize germplasm investigated with SSRs. Theor Appl Genet 111:723–730

    Article  PubMed  Google Scholar 

  • Storey JD (2002) A direct approach to false discovery rates. J R Stat Soc Ser B 64:479–498

    Article  Google Scholar 

  • Storey JD, Tibshirani R (2003) R: statistical significance for genome-wide experiments. Proc Natl Acad Sci U S A 100:9440–9445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066

    Article  CAS  PubMed  Google Scholar 

  • Teviotdale BL, Michailides TJ, Pscheidt JW (2002) Compendium of nut crop diseases in temperate zones. APS Press, St. Paul, MN

    Google Scholar 

  • United Nations (2010) Unece Standard DDP-04. https://www.nutfruit.org/wp-continguts/exportacions_mycored/standard-11_4597.pdf. Accessed 07.07.2014

  • Vos F, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new concept for DNA fingerprinting. Nucl Acids Res 23:4407–4414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu YX, Hanna MA (2010) Evaluation of Nebraska hybrid hazelnuts: nut/kernel characteristics, kernel proximate composition, and oil and protein properties. Ind Crop Prod 31:84–91

    Article  CAS  Google Scholar 

  • Zhu C, Gore M, Buckler ES, Yu J (2008) Status and prospects of association mapping in plants. The Plant Genome 1:5–20

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by The Scientific and Technological Research Council of Turkey (TUBITAK, project no: 212T201). It was carried out in the frame of The Bilateral Scientific and Technological Cooperation between the Republic of Slovenia and Turkey, BI-TR/13-15-003. We thank Amy Frary for review of the manuscript.

Author contribution statement

SCO and SEO performed laboratory experiments and drafted manuscript; SCO analyzed the genetic diversity data; IC analyzed the association mapping data; FS, RV, and AS performed all morphological characterization; AF helped design the study and write the manuscript; SD designed the study and received funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Frary.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data archiving

Data will be available at http://plantmolgen.iyte.edu.tr/data/ upon publication.

Additional information

Communicated by M. Troggio

SC. Ozturk and SE Ozturk contributed equally to this paper

Electronic supplementary material

Table S1

(DOCX 27 kb)

Table S2

(DOCX 15 kb)

Table S3

(DOCX 14 kb)

Table S4

(DOCX 22 kb)

Table S5

(DOCX 15 kb)

Table S6

(DOCX 15 kb)

Table S7

(DOCX 25 kb)

Table S8

(DOCX 16 kb)

Fig. S1

(DOCX 133 kb)

Fig. S2

(DOCX 59 kb)

Fig. S3

(DOCX 199 kb)

Fig. S4

(DOCX 51 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozturk, S.C., Ozturk, S.E., Celik, I. et al. Molecular genetic diversity and association mapping of nut and kernel traits in Slovenian hazelnut (Corylus avellana) germplasm. Tree Genetics & Genomes 13, 16 (2017). https://doi.org/10.1007/s11295-016-1098-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-016-1098-4

Keywords

Navigation