Skip to main content
Log in

Tetraploid citrus progenies arising from FDR and SDR unreduced pollen in 4x X 2x hybridizations

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Polyploid citrus arise by somatic and sexual polyploidization, and both have been used in triploid breeding programs. Sexual polyploidization is mainly achieved by first-division restitution (FDR) or second-division restitution (SDR) meiotic restitution mechanisms. In citrus, mostly SDR producing 2n ovule has been described. However, we obtained 72 tetraploid hybrids from 4x X 2x sexual hybridizations using two doubled-diploid mandarins as female parents (‘Moncada’ mandarin and ‘Fina’ clementine) and a diploid hybrid tangor as male parent (clementine X sweet orange—‘CSO’) suggesting 2n pollen formation. This material was used to confirm the existence of 2n pollen in Citrus and to analyze its origin. SSR and SNP molecular marker analyses revealed that 64 out of the 72 recovered tetraploid plants resulted from the fertilization of a reduced diploid female gamete by unreduced (diploid) pollen from ‘CSO’, whereas eight tetraploid plants arose from self-pollination of the tetraploid parent. The maximum-likelihood method based on parental heterozygosity restitution (PHR) of centromeric loci identified both FDR and SDR as the mechanisms leading to unreduced male gamete formation. From the 64 unreduced gametes produced by diploid ‘CSO’ tangor, 41 (64.1%) were originated by FDR, whereas 12 (18.8%) were significant for SDR. Non-conclusive results were obtained for 11gametes (17.2%). The pattern of PHR variation of markers located along the linkage group 2 confirmed our results at population level. To our knowledge, this is the first report of tetraploid citrus progenies arising from unreduced pollen and the first description of the coexistence of two meiotic restitution mechanisms (SDR and FDR) producing unreduced pollen in citrus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aleza P, Juarez J, Ollitrault P, Navarro L (2009) Production of tetraploid plants of non apomictic citrus genotypes. Plant Cell Rep 28:1837–1846

    Article  CAS  PubMed  Google Scholar 

  • Aleza P, Juárez J, Cuenca J, Ollitrault P, Navarro L (2010) Recovery of citrus triploid hybrids by embryo rescue and flow cytometry from 2x× 2x sexual hybridisation and its application to extensive breeding programs. Plant Cell Rep 291023-1034

  • Aleza P, Froelicher Y, Schwarz S, Agustí M, et al. (2011) Tetraploidization events by chromosome doubling of nucellar cells are frequent in apomictic citrus and are dependent on genotype and environment. Ann Bot 108(1):37–50

  • Aleza P, Juarez J, Cuenca J, Ollitrault P, Navarro L (2012a) Extensive citrus triploid hybrid production by 2x× 4x sexual hybridizations and parent-effect on the length of the juvenile phase. Plant Cell Rep 31:1723–1735

    Article  CAS  PubMed  Google Scholar 

  • Aleza P, Juárez J, Hernández M, Ollitrault P, Navarro L (2012b) Implementation of extensive citrus triploid breeding programs based on 4x× 2x sexual hybridisations. Tree Genet Genomes 8:1293–1306

    Article  Google Scholar 

  • Aleza P, Cuenca J, Hernández M, Juárez J, Navarro L, Ollitrault P (2015) Genetic mapping of centromeres of the nine Citrus clementina chromosomes using half-tetrad analysis and recombination patterns in unreduced and haploid gametes. BMC Plant Biol 15:80

    Article  PubMed  PubMed Central  Google Scholar 

  • Aleza P, Cuenca J, Juárez J, Navarro L, Ollitrault P (2016) Inheritance in doubled-diploid clementine and comparative study with SDR unreduced gametes of diploid clementine. Plant Cell Rep 1–14

  • Barba-Gonzalez R, Lim K, Ramanna M, Visser R, Van Tuyl J (2005) Occurrence of 2n gametes in the F1 hybrids of Oriental × Asiatic lilies (Lilium): relevance to intergenomic recombination and backcrossing. Euphytica 143:67–73

    Article  CAS  Google Scholar 

  • Barone A, Gebhardt C, Frusciante L (1995) Heterozygosity in 2n gametes of potato evaluated by RFLP markers. Theor Appl Genet 91:98–104

    Article  CAS  PubMed  Google Scholar 

  • Bastiaanssen HJ, Van Den Berg PMMM, Lindhout P, Jacobsen E, Ramanna M (1998) Postmeiotic restitution in 2n-egg formation of diploid potato. Heredity 81:20–27

    Article  CAS  Google Scholar 

  • Bingham E, McCoy T (1979) Cultivated alfalfa at the diploid level: origin, reproductive stability, and yield of seed and forage. Crop Sci 19:97–100

    Article  Google Scholar 

  • Bretagnolle F (2001) Pollen production and spontaneous polyploidization in diploid populations of Anthoxanthum alpinum. Biol J Linn Soc 72:241–247

    Article  Google Scholar 

  • Bretagnolle F, Thompson J (1995) Gametes with the somatic chromosome number: mechanisms of their formation and role in the evolution of autopolyploid plants. New Phytol 129:1–22

    Article  Google Scholar 

  • Brownfield L, Kohler C (2011) Unreduced gamete formation in plants: mechanisms and prospects. J Exp Bot 62:1659–1668

    Article  CAS  PubMed  Google Scholar 

  • Cameron J, Burnett R (1978) Use of sexual tetraploid seed parents for production of triploid citrus hybrids. Hortscience 13:167–169

    Google Scholar 

  • Carputo D, Frusciante L, Peloquin SJ (2003) The role of 2n gametes and endosperm balance number in the origin and evolution of polyploids in the tuber-bearing Solanums. Genetics 163:287–294

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Zhou P, Choi YA, Huang S, Gmitter FG Jr (2006) Mining and characterizing microsatellites from citrus ESTs. Theor Appl Genet 112:1248–1257

    Article  CAS  PubMed  Google Scholar 

  • Cuenca J, Froelicher Y, Aleza P, Juárez J, Navarro L, Ollitrault P (2011) Multilocus half-tetrad analysis and centromere mapping in citrus: evidence of SDR mechanism for 2n megagametophyte production and partial chiasma interference in mandarin cv ‘Fortune’. Heredity 107:462–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuenca J, Aleza P, Navarro L, Ollitrault P (2013) Assignment of SNP allelic configuration in polyploids using competitive allele-specific PCR: application to citrus triploid progeny. Ann Bot 111:731–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuenca J, Aleza P, Juárez J, García-Lor A, Froelicher Y, Navarro L, Ollitrault P (2015) Maximum-likelihood method identifies meiotic restitution mechanism from heterozygosity transmission of centromeric loci: application in citrus. Sci Rep 5:9897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuppen E (2007) Genotyping by Allele-Specific Amplification (KASPar). CSH Protoc 2007:pdb.prot4841

  • Curk F, Ancillo G, Ollitrault F, Perrier X, Jacquemoud-Collet J, Garcia-Lor A, Navarro L, Ollitrault P (2015) Nuclear species-diagnostic SNP markers mined from 454 amplicon sequencing reveal admixture genomic structure of modern citrus varieties. PloSOne 10:e0125628

    Article  Google Scholar 

  • Dermen H (1938) Detection of polyploidy by grain size: investigation with peaches and apricots. Proc Am Soc Hortic Sci 35:96–103

    Google Scholar 

  • De Storme N, Geelen D (2013) Sexual polyploidization in plants–cytological mechanisms and molecular regulation. New Phytol 198:670–684

    Article  PubMed  PubMed Central  Google Scholar 

  • d’Erfurth I, Jolivet S, Froger N, Catrice O, Novatchkova M, Simon M, Jenczewski E, Mercier R (2008) Mutations in AtPS1 Arabidopsis thaliana parallel spindle lead to the production of diploid pollen grains. PLoS Genet 4:e1000274

    Article  PubMed  PubMed Central  Google Scholar 

  • Esen A, Soost RK (1971) Unexpected triploids in Citrus: their origin, identification, and possible use. J Hered 62:329–333

    Article  Google Scholar 

  • Esen A, Soost RK (1973) Precocious development and germination of spontaneous triploid seeds in Citrus. J Hered 64:147–154

    Article  Google Scholar 

  • Esselink G, Nybom H, Vosman B (2004) Assignment of allelic configuration in polyploids using the MAC-PR (microsatellite DNA allele counting—peak ratios) method. Theor Appl Genet 109:402–408

    Article  CAS  PubMed  Google Scholar 

  • Froelicher Y, Dambier D, Bassene J, Costantino G, Lotfy S, Didout C, Beaumont V, Brottier P, Risterucci A, Luro F (2008) Characterization of microsatellite markers in mandarin orange (Citrus reticulata Blanco). Mol Ecology Resour 8:119–122

    Article  CAS  Google Scholar 

  • Frost HB, Soost RK (1968) Seed reproduction, development of gametes and embryos. In: Reuther W, Batchelor LD, Webber HB (eds) The citrus industry, V.2. University of California, Barkley, USA, p 290–324

  • Gallais A (2003) Quantitative genetics and breeding methods in autopolyploid plants. INRA Editions, Paris

    Google Scholar 

  • García-Lor A, Luro F, Navarro L, Ollitrault P (2012) Comparative use of InDel and SSR markers in deciphering the interspecific structure of cultivated citrus genetic diversity: a perspective for genetic association studies. Mol Gen Genomics 287:77–94

    Article  Google Scholar 

  • Geraci G, Esen A, Soost RK (1975) Triploid progenies from 2x - 2x crosses of Citrus cultivars. J Hered 66:177–178

  • Grosser JW, Gmitter FG Jr (2011) Protoplast fusion for production of tetraploids and triploids: applications for scion and rootstock breeding in citrus. Plant Cell Tiss Org 104:343–357

    Article  CAS  Google Scholar 

  • Honsho C, Yamamura E, Tsuruta K, Yoshimaru Y, Yasuda K, Uchida A, Kunitake H, Tetsumura T (2012) Unreduced 2n pollen production in ‘Nishiuchi Konatsu’ Hyuganatsu as inferred by pollen characteristics and progeny ploidy level. J Jpn Soc Hortic Sci 81:19–26

    Article  Google Scholar 

  • Honsho C, Sakata A, Tanaka H, Ishimura S, Tetsumura T (2016) Single-pollen genotyping to estimate mode of unreduced pollen formation in Citrus tamurana cv. Nishiuchi Konatsu. Plant Reprod 1–9

  • Hutten R, Schippers M, Hermsen JT, Ramanna M (1994) Comparative performance of FDR and SDR progenies from reciprocal 4×-2× crosses in potato. Theor Appl Genet 89:545–550

    Article  CAS  PubMed  Google Scholar 

  • Iwanaga M, Freyre R, Orjeda G (1991) Use of Ipomoea trifida (HBK.) G. Don germ plasm for sweet potato improvement. 1. Development of synthetic hexaploids of I. trifida by ploidy-level manipulations. Genome 34:201–208

    Article  Google Scholar 

  • Jaskani MJ, Omura M, Khan IA (2007) Cytogenetics. In: Khan IA (ed) Citrus genetics, breeding and biotechnology. CABI, Wallingford, pp 151–166

    Chapter  Google Scholar 

  • Karlov G, Khrustaleva L, Lim K, Van Tuyl J (1999) Homoeologous recombination in 2 n-gametes producing interspecific hybrids of Lilium (Liliaceae) studied by genomic in situ hybridization (GISH). Genome 42:681–686

    Article  Google Scholar 

  • Krug C (1943) Chromosome numbers in the subfamily Aurantioideae with special reference to the genus Citrus. Bot Gaz 602–611

  • Lee L (1988) Citrus polyploidy-origins and potential for cultivar improvement. Crop Pasture Sci 39:735–747

    Article  Google Scholar 

  • Liesebach H, Ulrich K, Ewald D (2015) FDR and SDR processes in meiosis and diploid gamete formation in poplars (Populus L.) detected by centromere-associated microsatellite markers. Tree Genet Genomes 11:801. doi:10.1007/s11295-014-0801-6

    Article  Google Scholar 

  • Lim K, Shen T, Barba-Gonzalez R, Ramanna M, Van Tuyl JM (2004) Occurrence of SDR 2 N-gametes in Lilium hybrids. Breed Sci 54:13–18

    Article  Google Scholar 

  • Luro F, Maddy F, Jacquemond C, Froelicher Y, Morillon R, Rist D, Ollitrault P (2004) Identification and evaluation of diplogyny in clementine (Citrus clementina) for use in breeding. Acta Hortic 663:841–847

    Article  Google Scholar 

  • Maceira N, De Haan A, Lumaret R, Billon M, Delay J (1992) Production of 2n gametes in diploid subspecies of Dactylis glomerata L. 1. Occurrence and frequency of 2n pollen. Ann Bot 69:335–343

    Article  Google Scholar 

  • Mason AS, Nelson MN, Yan G, Cowling WA (2011) Production of viable male unreduced gametes in Brassica interspecific hybrids is genotype specific and stimulated by cold temperatures. BMC Plant Biol 11:1

    Article  Google Scholar 

  • Mau M, Corral JM, Vogel H, Melzer M, Fuchs J, Kuhlmann M, de Storme N, Geelen D, Sharbel TF (2013) The conserved chimeric transcript UPGRADE2 is associated with unreduced pollen formation and is exclusively found in apomictic Boechera species. Plant Physiol 163:1640–1659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendiburu A, Peloquin S (1977a) The significance of 2n gametes in potato breeding. Theor Appl Genet 49:53–61

    Article  CAS  PubMed  Google Scholar 

  • Mendiburu AO, Peloquin S (1977b) Bilateral sexual polyploidization in potatoes. Euphytica 26:573–583

    Article  Google Scholar 

  • Mok D, Peloquin S, Tarn T (1975) Cytology of potato triploids producing 2n pollen. Am Potato J 52:171–174

    Article  Google Scholar 

  • Navarro L, Aleza P, Cuenca J, Juárez J, Pina JA, Ortega C, Navarro A, Ortega V (2015) The mandarin triploid breeding program in Spain. Acta Hort 1065:389–396

    Article  Google Scholar 

  • Ollitrault P, Dambier D, Luro F, Froelicher Y (2008) Ploidy manipulation for breeding seedless triploid citrus. Plant Breed Rev 30:323–352

    CAS  Google Scholar 

  • Ollitrault F, Terol J, Pina JA, Navarro L, Talon M, Ollitrault P (2010) Development of SSR markers from Citrus clementina (Rutaceae) BAC end sequences and interspecific transferability in Citrus. Am J Bot 97:e124–e129

    Article  CAS  PubMed  Google Scholar 

  • Ollitrault P, Terol J, Chen C, Federici CT, Lotfy S, Hippolyte I, Ollitrault F, Bérard A, Chauveau A, Cuenca J (2012a) A reference genetic map of C. clementina hort. ex Tan.; citrus evolution inferences from comparative mapping. BMC Genomics 13:1

    Article  Google Scholar 

  • Ollitrault P, Terol J, Garcia-Lor A, Berard A, Chauveau A, Froelicher Y, Belzile C, Morillon R, Navarro L, Brunel D, Talon M (2012b) SNP mining in C. clementina BAC end sequences; transferability in the Citrus genus (Rutaceae), phylogenetic inferences and perspectives for genetic mapping. BMC Genomics 13:13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortiz R (1997) Occurrence and inheritance of 2n pollen in Musa. Ann Bot 79:449–453

    Article  Google Scholar 

  • Park TH, Kim JB, Hutten RC, van Eck HJ, Jacobsen E, Visser RG (2007) Genetic positioning of centromeres using half-tetrad analysis in a 4x-2x cross population of potato. Genetics 176:85–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parrott W, Smith R, Smith M (1985) Bilateral sexual tetraploidization in red clover. Can J Genet Cytol 27:64–68

    Article  Google Scholar 

  • Peloquin S (1982) Meiotic mutants in potato breeding. Stadler Genet Symp 14:99–109

    Google Scholar 

  • Peloquin S (1983) Genetic engineering with meiotic mutants. In: Mulcahy DL, Mulcahy Bergamini G, Ottaviano E (eds) Pollen: biology and implications for plant breeding. Elsevier, New York, pp 311–316

    Google Scholar 

  • Perrier X, Jacquemoud-Collet J (2006) DARwin software. http://darwin.cirad.fr/darwin 5.0.158

  • Ramsey J (2007) Unreduced gametes and neopolyploids in natural populations of Achillea borealis (Asteraceae). Heredity 98:143–150

    Article  CAS  PubMed  Google Scholar 

  • Ramsey J, Schemske DW (1998) Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu Rev Ecol Syst 467–501

  • Rhoades MM, Dempsey E (1966) Induction of chromosome doubling at meiosis by the elongate gene in maize. Genetics 54:505–522

    CAS  PubMed  PubMed Central  Google Scholar 

  • Starrantino A, Recupero G (1981) Citrus hybrids obtained in vitro from 2× females × 4× males. In: Proceedings of 4th international citrus congress, vol 1. International Society of Citriculture, Tokyo, pp 31–32

    Google Scholar 

  • Strasburger E (1910) Sexuelle und apogame. Fortpflanzungbei Urtica queen

  • Tavoletti S, Bingham ET, Yandell BS, Veronesi F, Osborn TC (1996) Half tetrad analysis in alfalfa using multiple restriction fragment length polymorphism markers. Proc Natl Acad Sci U S A 93:10918–10922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vorsa N, Rowland L (1997) Estimation of 2n megagametophyte heterozygosity in a diploid blueberry (Vaccinium darrowi Camp) clone using RAPDs. J Hered 88:423–426

    Article  CAS  Google Scholar 

  • Watanabe K, Peloquin SJ (1993) Cytological basis of 2 n pollen formation in a wide range of 2 x, 4 x, and 6 x taxa from tuber-bearing Solanum species. Genome 36:8–13

    Article  CAS  PubMed  Google Scholar 

  • Wu GA, Prochnik S, Jenkins J, Salse J, Hellsten U, Murat F, Perrier X, Ruiz M, Scalabrin S, Terol J, Takita MA, Labadie K, Poulain J, Couloux A, Jabbari K, Cattonaro F, Del Fabbro C, Pinosio S, Zuccolo A, Chapman J, Grimwood J, Tadeo FR, Estornell LH, Munoz-Sanz JV, Ibanez V, Herrero-Ortega A, Aleza P, Perez-Perez J, Ramon D, Brunel D, Luro F, Chen C, Farmerie WG, Desany B, Kodira C, Mohiuddin M, Harkins T, Fredrikson K, Burns P, Lomsadze A, Borodovsky M, Reforgiato G, Freitas-Astua J, Quetier F, Navarro L, Roose M, Wincker P, Schmutz J, Morgante M, Machado MA, Talon M, Jaillon O, Ollitrault P, Gmitter F, Rokhsar D (2014) Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication. Nat Biotechnol 32:656–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie K, Wang X, Biswas MK, Liang W, Xu Q, Grosser JW, Guo W (2014) 2n megagametophyte formed via SDR contributes to tetraploidization in polyembryonic ‘Nadorcott’ tangor crossed by citrus allotetraploids. Plant Cell Rep 33:1641–1650

    Article  CAS  PubMed  Google Scholar 

  • Zlesak DC (2009) Pollen diameter and guard cell length as predictors of ploidy in diverse rose cultivars, species, and breeding lines. Floriculture Ornamental Biotech 3:53–70

    Google Scholar 

Download references

Authors’ contribution statement

PO, PA and LN conceived and designed the experiments. HR performed the experiments and provided plant material. HR, PA analyzed the data. JC provided a statistical method for the unreduced gamete identification. HR, PA and PO wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. Ollitrault or P. Aleza.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data archiving statement

No data for archiving.

Additional information

Communicated by W.-W. Guo

Key message

Both FDR and SDR are the two meiotic mechanisms underlying 2n pollen formation in a diploid hybrid between clementine and sweet orange.

Electronic supplementary material

ESM 1

(PDF 80 kb)

ESM 2

(PDF 7 kb)

ESM 3

(PDF 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rouiss, H., Cuenca, J., Navarro, L. et al. Tetraploid citrus progenies arising from FDR and SDR unreduced pollen in 4x X 2x hybridizations. Tree Genetics & Genomes 13, 10 (2017). https://doi.org/10.1007/s11295-016-1094-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-016-1094-8

Keywords

Navigation