Tree Genetics & Genomes

, 12:108 | Cite as

Polygenic inheritance of resistance to Cacopsylla pyri in a Pyrus communis × P. ussuriensis progeny is explained by three QTLs involving an epistatic interaction

  • Perchepied L.
  • Guérif P.
  • Ravon E.
  • Denancé C.
  • Laurens F.
  • Robert P.
  • Bouvier L.
  • Lespinasse Y.
  • Durel C.E.
Original Article
Part of the following topical collections:
  1. Complex Traits


Pear psylla (Cacopsylla pyri) causes severe damage on European pear cultivars, resulting in high yield losses. Its control has become difficult since it developed resistance to a wide range of pesticides, while the number of authorized molecules for pest control has decreased. Identifying pear psylla resistance factors should help breeding new resistant pear cultivars. We analyzed the quantitative resistance to psylla inherited from the genotype NY 10355 derived from Pyrus ussuriensis. Quantitative trait locus (QTL) analysis was carried out after counting the number of nymphs and estimating the nymphal development rate using a free-choice test performed on a large segregating progeny. We mapped two new loci for pear psylla resistance on linkage groups LG01 and LG04 of NY 10355 and confirmed the QTL previously detected on LG17. A strong epistatic interaction between the two QTLs detected on LG01 and LG17 appeared to be a major factor controlling the psylla infestation in the genotype NY 10355.


Epistasis QTLs Pear Psylla Interspecific 



We greatly thank Rémi Guisnel, André Belouin, Bernard Petit, François Lebreton, Maryline Bruneau, Roland Robic, and Yves Rabineau (UMR1345 IRHS, Angers, France) for their precious help in the scoring of psylla nymphs. We thank Pierre-Olivier Fongueuse for taking care of the psylla. We thank Hélène Muranty for her help in the statistical analyses. We thank Charles Poncet and Laurence Hibrand-Saint Oyant for their genotyping technical assistance delivered by the platforms GENTYANE of Clermont-Ferrand-Theix ( and ANAN of the SFR QUASAV (Structure Fédérative de Recherche 4207), respectively. We also thank the UE Horti experimental unit and the team in charge of the greenhouse management (INEM platform) for taking care of the plant material.

Compliance with ethical standards

Data archiving statement

Phenotypic, markers, and QTL data will be made publicly available through the Genome Database for Rosaceae (

Supplementary material

11295_2016_1072_MOESM1_ESM.pdf (36 kb)
ESM 1 (PDF 35 kb)
11295_2016_1072_MOESM2_ESM.pdf (10 kb)
ESM 2 (PDF 9 kb)
11295_2016_1072_MOESM3_ESM.pdf (11 kb)
ESM 3 (PDF 10 kb)


  1. Berrada S, Nguyen TX, Lemoine J, Vanpoucke J, Fournier D (1995) Thirteen pear species and cultivars evaluated for resistance to Cacopsylla pyri (Homoptera: Psyllidae). Environ Entomol 24:1604–1607CrossRefGoogle Scholar
  2. Boissot N, Thomas S, Sauvion N, Marchal C, Pavis C, Dogimont C (2010) Mapping and validation of QTLs for resistance to aphids and whiteflies in melon. Theor Appl Genet 121:9–20. doi: 10.1007/s00122-010-1287-8 CrossRefPubMedGoogle Scholar
  3. Bouvier L, Bourcy M, Boulay M, Tellier M, Guérif P, Denancé C, Durel CE, Lespinasse Y (2011) European pear cultivar resistance to bio-pests: scab (Venturia pirina) and psylla (Cacopsylla pyri). Acta Hortic 909:459–470CrossRefGoogle Scholar
  4. Broggini G, Galli P, Parravicini G, Gianfranceschi L, Gessler C, Patocchi A (2009) HcrVf paralogs are present on linkage groups 1 and 6 of Malus. Genome 52:129–138CrossRefPubMedGoogle Scholar
  5. Butt BA, Stuart LC, Bell RL (1988) Feeding behavior of pear psylla (Homoptera: Psyllidae) nymphs on susceptible and resistant Pyrus germplasm. J Econ Entomolgy 81:1394–1397CrossRefGoogle Scholar
  6. Butt BA, Stuart LC, Bell RL (1989) Feeding, longevity, and development of pear psylla (Homoptera: Psyllidae) nymphs on resistant and susceptible pear genotypes. J Econ Entomol 82:458–461CrossRefGoogle Scholar
  7. Calenge F, Drouet D, Denancé C, Van de Weg WE, Brisset MN, Paulin JP, Durel CE (2005) Identification of a major QTL together with several minor additive or epistatic QTLs for resistance to fire blight in apple in two related progenies. Theor Appl Genet 111:128–135. doi: 10.1007/s00122-005-2002-z CrossRefPubMedGoogle Scholar
  8. Celton JM, Tustin DS, Chagné D, Gardiner SE (2009) Construction of a dense genetic linkage map for apple rootstocks using SSRs developed from Malus ESTs and Pyrus genomic sequences. Tree Genet Genomes 5:93–107CrossRefGoogle Scholar
  9. Cevik V, King G (2002) High-resolution genetic analysis of the Sd-1 aphid resistance locus in Malus spp. Theor Appl Genet 105:346–354CrossRefPubMedGoogle Scholar
  10. Chang JF, Philogene JR (1976) The development and behavior of the pear psylla, Psylla pyricola (Homoptera: Psyllidae), on different pear rootstocks and cultivars. Phytoprotection 57:137–149Google Scholar
  11. Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138(963):71Google Scholar
  12. Civolani S, Leis M, Grandi G, Garzo E, Pasqualini E, Musacchi S, Chicca M, Castaldelli G, Rossi R, Tjallingii WF (2011) Stylet penetration of Cacopsylla pyri; an electrical penetration graph (EPG) study. J Insect Physiol 57:1407–1419. doi: 10.1016/j.jinsphys.2011.07.008
  13. Costa F, van de Weg E, Stella S, Dondini L, Pratesi D, Musacchi S, Sansavini S (2008) Map position and functional allelic diversity of Md-Exp7, a new putative expansin gene associated with fruit softening in apple (Malus × domestica Borkh.) and pear (Pyrus communis). Tree Genet Genomes 4:575–586CrossRefGoogle Scholar
  14. Cova V, Perini D, Soglio V, Komjanc M, van de Weg E, Gessler C, Gianfranceschi L (2012) Exploiting expressed sequence tag databases for mapping markers associated with fruit development and fruit quality in apple. Mol Breeding 29:699–715CrossRefGoogle Scholar
  15. Dogimont C, Chovelon V, Tual S, Boissot N, Rittener V, Giovinazzo N, Bendahmane A (2007) Molecular determinants of recognition specificity at the aphid and powdery mildew Vat/PM-W resistance locus in melon. In: XIII International congress on molecular plant-microbe interactions. Book of abstracts (p. 375). Presented at 13th International congress on molecular plant-microbe interactions, Sorrento, ITA (2007-06-21–2007-06-27).Google Scholar
  16. Dondini L, Pierantoni L, Gaiotti F, Chiodini R, Tartarini S, Bazzi C, Sansavini S (2004) Identifying QTLs for fire-blight resistance via a European pear (Pyrus communis L.) genetic linkage map. Mol Breeding 14:407–418CrossRefGoogle Scholar
  17. Dondini L, De Franceschi P, Ancarani V, Civolani S, Fano EA, Musacchi S (2015) Identification of a QTL for psylla resistance in pear via genome scanning approach. Sci Hortic 197:568–572. doi: 10.1016/j.scienta.2015.10.018 CrossRefGoogle Scholar
  18. Fotirić Akšić M, Dabić DČ, Gašić UM, Zec GN, Vulić TB, Tešić ŽL, Natić MM (2015) Polyphenolic profile of pear leaves with different resistance to pear psylla (Cacopsylla pyri). J Agric Food Chem 63:7476–7486. doi: 10.1021/acs.jafc.5b03394 CrossRefPubMedGoogle Scholar
  19. Gessler C, Patocchi A, Sansavini S, Tartarini S, Gianfranceschi L (2006) Venturia inaequalis resistance in apple. Crit Rev Plant Sci 25:473–503. doi: 10.1080/07352680601015975 CrossRefGoogle Scholar
  20. Harris MK (1973) Host resistance to the pear psylla in a Pyrus communis × P. ussuriensis hybrid. Environ Entomol 2:883–887CrossRefGoogle Scholar
  21. Harris MK, Lamb RC (1973) Resistance to the pear psylla in pears with Pyrus ussuriensis lineage. J Am Soc Hortic Sci 98:378–381Google Scholar
  22. Hokanson SC, Szewc-McFadden AK, Lamboy WF, McFerson JR (1998) Microsatellite (SSR) markers reveal genetic identities, genetic diversity, and relationships in a Malus × domestica Borkh. core subset collection. Theor Appl Genet 97:671–683CrossRefGoogle Scholar
  23. Lannou C (2012) Variation and selection of quantitative traits in plant pathogens. Ann Rev Phytopathol 50:319–338CrossRefGoogle Scholar
  24. Lefebvre V, Palloix A (1996) Both epistatic and additive effects of QTLs are involved in polygenic induced resistance to disease: a case study, the interaction pepper—Phytophthora capsici Leonian. Theor Appl Genet 93:503–511CrossRefPubMedGoogle Scholar
  25. Lehner B (2011) Molecular mechanisms of epistasis within and between genes. Trends Genet 27:323–331CrossRefPubMedGoogle Scholar
  26. Le Lezec M, Belouin A, Guérif P, Lespinasse Y (2002) Angélys’, a new winter pear to replace ‘Passe Crassane. Acta Hortic 596:265–269CrossRefGoogle Scholar
  27. Lespinasse Y, Chevalier M, Durel CE, Robert P, Guérif P, Tellier M, Denancé C, Beloin A (2008) Pear breeding for scab and psylla resistance. Acta Hortic 800:475–482CrossRefGoogle Scholar
  28. Lê Van A, Caffier V, Lasserre-Zuber P, Chauveau A, Brunel D, Le Cam B, Durel CE (2013) Differential selection pressures exerted by host resistance quantitative trait loci on a pathogen population: a case study in an apple × Venturia inaequalis pathosystem. New Phytol 197:899–908CrossRefPubMedGoogle Scholar
  29. Liebhard R, Gianfranceschi L, Koller B, Ryder CD, Tarchini R, Van De Weg E, Gessler C (2002) Development and characterisation of 140 new microsatellites in apple (Malus × domestica Borkh). Mol Breeding 10:217–241CrossRefGoogle Scholar
  30. Maliepaard C, Alston FH, van Arkel G et al (1998) Aligning male and female linkage maps of apple (Malus pumila Mill.) using multi-allelic markers. Theor Appl Genet 97:60–73CrossRefGoogle Scholar
  31. Miller RL, Bills DD, Buttery RG (1989) Volatile components from Bartlett and Bradford pear leaves. J Agric Food Chem 37:1476–1479CrossRefGoogle Scholar
  32. Montanari S, Guérif P, Ravon E, Denancé C, Muranty H, Velasco R, Chagné D, Bus VGM, Robert P, Perchepied L, Durel CE (2015) Genetic mapping of Cacopsylla pyri resistance in an interspecific pear (Pyrus spp.) population. Tree Genet Genomes 11:74. doi: 10.1007/s11295-015-0901-y CrossRefGoogle Scholar
  33. Montanari S, Perchepied L, Renault D, Frijters L, Velasco R, Horner M, Gardiner SE, Chagné D, Bus VGM, Durel CE, Malnoy M (2016) A QTL detected in an interspecific pear population confers stable fire blight resistance across different environments and genetic backgrounds. Mol Breeding 36:47. doi: 10.1007/s11032-016-0473-z CrossRefGoogle Scholar
  34. Moriya S, Iwanami H, Kotoda N, Haji T, Okada K, Terakami S, Mimida N, Yamamoto T, Abe K (2012) Aligned genetic linkage maps of apple rootstock cultivar ‘JM7’ and Malus sieboldii ‘Sanashi 63’ constructed with novel EST-SSRs. Tree Genet Genomes 8:709–723. doi: 10.1007/s11295-011-0458-3 CrossRefGoogle Scholar
  35. Parravicini G, Gessler C, Denancé C, Lasserre-Zuber P, Vergne E, Brisset MN, Patocchi A, Durel CED, Broggini GAL (2011) Identification of serine/threonine kinase and nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes in the fire blight resistance quantitative trait locus of apple cultivar ‘Evereste’. Mol Plant Pathol 12:493–505. doi: 10.1111/J.1364-3703.2010.00690.X CrossRefPubMedGoogle Scholar
  36. Pasqualini E, Civolani S, Musacchi S et al (2006) Cacopsylla pyri behaviour on new pear selections for host resistance programs. Bull Insectology 59:27–37Google Scholar
  37. Perazzolli M, Malacarne G, Baldo A, Righetti L, Bailey A, Fontana P, Velasco R, Malnoy M (2014) Characterization of resistance gene analogues (RGAs) in apple (Malus × domestica Borkh.) and their evolutionary history of the Rosaceae Family. PLoS One 9(2):e83844. doi: 10.1371/journal.pone.0083844 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Perchepied L, Dogimont C, Pitrat M (2005) Strain-specific and recessive QTLs involved in the control of partial resistance to Fusarium oxysporum f. sp. melonis race 1.2 in a recombinant inbred line population of melon. Theor Appl Genet 111:65–74. doi: 10.1007/s00122-005-1991-y CrossRefPubMedGoogle Scholar
  39. Perchepied L, Leforestier D, Ravon E, Guérif P, Denancé C, Tellier M, Terakami S, Yamamoto T, Chevalier M, Lespiansse Y, Durel CE (2015) Genetic mapping and pyramiding of two new pear scab resistance QTLs. Mol Breeding 35:197–210. doi: 10.1007/s11032-015-0391-5 CrossRefGoogle Scholar
  40. Puterka GJ, Bell RL, Jones SK (1993) Ovipositional preference of pear psylla (Homoptera: Psyllidae) for resistant and susceptible pear. J Econ Entomol 86:1297–1302CrossRefGoogle Scholar
  41. Quamme HA (1984) Observations of psylla resistance among several pear cultivars and species. Fruit Varieties J 38:34–36Google Scholar
  42. Robert P, Chausset J, Le Lezec M (1999) Larval development of Cacopsylla pyri (L.) (Homoptera: Psyllidae) on two resistant Pyrus genotypes. IOBC/wprs Bulletin 22(10):89–91Google Scholar
  43. Robert P, Guérif P, Lemoine J, Le Lezec M (2004) Criblage de génotypes de Pyrus vis-à-vis de la résistance au psylle du poirier Cacopsylla pyri (L.). Cahiers Agricultures 13:349–354Google Scholar
  44. Salvianti F, Bettini PP, Giordani E et al (2008) Identification by suppression subtractive hybridization of genes expressed in pear (Pyrus spp.) upon infestation with Cacopsylla pyri (Homoptera: Psyllidae). J Plant Physiol 165:1808–1816. doi: 10.1016/j.jplph.2007.12.010 CrossRefPubMedGoogle Scholar
  45. Scutareanu P, Bruin J, Posthumus MA, Drukker B (2003) Constitutive and herbivore-induced volatiles in pear, alder and hawthorn trees. Chemoecology 13:63–74. doi: 10.1007/s00049-002-0228-7 CrossRefGoogle Scholar
  46. Silfverberg-Dilworth E, Matasci CL, Van de Weg WE, Van Kaauwen MPW, Walser M, Kodde LP, Soglio V, Gianfranceschi L, Durel CE, Costa F, Yamamoto T, Koller B, Gessler C, Patocchi A (2006) Microsatellite markers spanning the apple (Malus × domestica Borkh) genome. Tree Genet Genomes 2:202–224CrossRefGoogle Scholar
  47. Terakami S, Shoda M, Adachi Y, Gonai T, Kasumi M, Sawamura Y, Iketani H, Kotobuki K, Patocchi A, Gessler C, Hayashi T, Yamamoto T (2006) Genetic mapping of the pear scab resistance gene Vnk of Japanese pear cultivar Kinchaku. Theor Appl Genet 113:743–752. doi: 10.1007/s00122-006-0344-9 CrossRefPubMedGoogle Scholar
  48. Van Dyk MM, Khashief Soeker M, Labuschagne IF, Rees DJG (2010) Identification of a major QTL for time of initial vegetative budbreak in apple (Malus × domestica Borkh.). Tree Genet Genomes 6:489–502CrossRefGoogle Scholar
  49. Van Ooijen JW (2004) MapQTL 5, software for the mapping of quantitative trait loci in experimental population. Kyazma B.V, Wageningen, NetherlandsGoogle Scholar
  50. Van Ooijen JW (2006) JoinMap 4, software for the calculation of genetic linkage maps in experimental populations. Kyazma B.V, Wageningen, NetherlandsGoogle Scholar
  51. Vinatzer BA, Patocchi A, Tartarini S, Gianfranceschi L, Sansavini S, Gessler C (2004) Isolation of two microsatellite markers from BAC clones of the Vf scab resistance region and molecular characterization of scab-resistant accessions in Malus germplasm. Plant Breed 123:321–326CrossRefGoogle Scholar
  52. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Heredity 93:77–78CrossRefGoogle Scholar
  53. Westigard PH, Westwood MN, Lombard PB (1970) Host preference and resistance of Pyrus species to the pear psylla, Psylla pyricola Foerster. J Am Soc Hortic Sci 95:34–36Google Scholar
  54. Westigard PH, Zwick RW (1972) The pear psylla in Oregon. Oregon Agric Exp Sta Tech Bull 122:3–22Google Scholar
  55. Wu J, Wang Z, Shi Z et al (2013) The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res 23:396–408. doi: 10.1101/gr.144311.112 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Yamamoto T, Kimura T, Sawamura Y, Manabe T, Kotobuki K, Hayashi T, Ban Y, Matsuta N (2002a) Simple sequence repeats for genetic analysis in pear. Euphytica 124:129–137CrossRefGoogle Scholar
  57. Yamamoto T, Kimura T, Shoda M, Ban Y, Hayashi T, Matsuta N (2002b) Development of microsatellite markers in the Japanese pear (Pyrus pyrifolia Nakai). Mol Ecol Notes 2:14–16CrossRefGoogle Scholar
  58. Yamamoto T, Kimura T, Terakami S, Nishitani C, Sawamura Y, Saito T, Kotobuki K, Hayashi T (2007) Integrated reference genetic linkage maps of pear based on SSR and AFLP markers. Breeding Sci 57:321–329CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Perchepied L.
    • 1
  • Guérif P.
    • 1
  • Ravon E.
    • 1
  • Denancé C.
    • 1
  • Laurens F.
    • 1
  • Robert P.
    • 1
  • Bouvier L.
    • 1
  • Lespinasse Y.
    • 1
  • Durel C.E.
    • 1
  1. 1.IRHS, INRA, AGROCAMPUS-OuestUniversité d’Angers, SFR 4207 QUASAVBeaucouzé cedexFrance

Personalised recommendations