Skip to main content
Log in

Genetic structure and diversity of populations of polyploid Tibouchina pulchra Cogn. (Melastomataceae) under different environmental conditions in extremes of an elevational gradient

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

The genetic structure and diversity of plants may change significantly in an elevational gradient because different elevations regulate different ecological conditions. Several factors may influence genetic variation, such as mutations, selection, genetic drift, and gene flow. The aim of the present study was to evaluate the genetic structure and diversity of populations of Tibouchina pulchra Cogn. (Melastomataceae) trees in two extremes of an elevational gradient experiencing different environmental conditions. Nine polymorphic microsatellite loci were used to measure the genetic diversity of 14 adult populations, whose structure was evaluated using frequentist and Bayesian analyses. We also carried out progeny structure and paternity analyses comparing the number of fathers of each progeny and the probability of the progeny genotypes to be the result of selfing in order to evaluate the possible current processes leading to such genetic structure. Genetic structure analyses indicated the existence of genetic differentiation between populations in adults and progenies, but with a contact interface between them. The population from the higher region showed smaller genetic diversity when compared to the population at the lower region. However, the pollen variability delivered to the stigmas at the higher region was not different from that of the lower region. These results may be explained by the dynamics of gene flow mediated by pollen, especially by the different amounts of pollination events in each region, as well as local adaptation, distribution, and reproduction characteristics of T. pulchra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Almeda F, Chuang TI (1992) Chromosome numbers and their systematic significance in some Mexican Melastomataceae. Syst Bot 17(4):583–593

    Article  Google Scholar 

  • Alvares CA, Stape JL, Sentelhas PC, Golçalves JLM, Sparovek G (2014) Köppen’s climate classification map for Brazil. Meteorol Z 22(6):711–728

    Article  Google Scholar 

  • Arroyo MTK, Armesto JJ, Primack RB (1985) Community studies in pollination ecology in the high temperate Andes of central Chile. II. Effect of temperature on visitation rates and pollination possibilities. Plant Syst Evol 149:187–203

    Article  Google Scholar 

  • Bawa KS (1995) Pollination, seed dispersal and diversification of angiosperms. Trends Ecol Evol 10(8):311–312

    Article  CAS  PubMed  Google Scholar 

  • Bencke CC, Morellato PLC (2002) Comparação de dois métodos de avaliação da fenologia de plantas, sua interpretação e representação. Rev Bras Bot 25(3):269–275

    Article  Google Scholar 

  • Bockelmann AC, Reusch TBH, Bijlsma R, Bakker JP (2003) Habitat differentiation vs. isolation-by-distance: the genetic population structure of Elymus athericus in European salt marshes. Mol Ecol 12(2):505–515

    Article  CAS  PubMed  Google Scholar 

  • Brito VLG, Sazima M (2012) Tibouchina pulchra (Melastomataceae): reproductive biology of a tree species at two sites of an elevational gradient in the Atlantic rainforest in Brazil. Plant Syst Evol 298:1271–1279

    Article  Google Scholar 

  • Brito VLG, Vigna BBZ, Souza AP (2010) Characterization of 12 microsatellite loci from an enriched genomic library in polyploid Tibouchina pulchra Cogn. (Melastomataceae. Conserv Genet Resour 2(1):193–196

    Article  Google Scholar 

  • Brito VLG, Weynans K, Sazima M, Lunau K (2015) Trees as huge flowers and flowers as oversized floral guides: the role of floral color change and retention of old flowers in Tibouchina pulchra. Front Plant Sci 6:362

    PubMed  PubMed Central  Google Scholar 

  • Buchmann SL (1983) Buzz pollination in angiosperms. In: Jones CE, Little RJ (eds) Handbook of experimental pollination biology. Van Nostrand Reinhold, New York, pp. 73–113

    Google Scholar 

  • Byars SG, Parsons Y, Hoffmann AA (2009) Effect of altitude on the genetic structure of an Alpine grass, Poa hiemata. Ann Bot 103:885–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byrne M, Hankinson M, Sampson JF, Stankowski S (2008) Microsatellite markers isolated from a polyploid saltbush, Atriplex nummularia Lindl. (Chenopodiaceae. Mol Ecol Resour 8(6):1426–1428

    Article  CAS  PubMed  Google Scholar 

  • Caddah MK, Campos T, Sforça DA et al (2009) Microsatellite markers isolated from polyploid Kielmeyera coriacea Mart. and Zucc. (Clusiaceae) from an enriched genomic library. Conserv Genet 10(5):1533–1535

    Article  CAS  Google Scholar 

  • Charlesworth D, Charlesworth B (1987) Inbreeding depression and its evolutionary consequences. Annu Rev Ecol Syst 18:237–268

    Article  Google Scholar 

  • Cribari-Neto F, Zeileis A (2010) Beta regression in R. J Stat Softw 34(2):1–24

    Article  Google Scholar 

  • De Silva HN, Hall AJ, Rikkerink E, McNeilage MA, Fraser LG (2005) Estimation of allele frequencies in polyploids under certain patterns of inheritance. Heredity 95(4):327–334

    Article  CAS  PubMed  Google Scholar 

  • Don RH, Cox PT, Wainwright BJ, Baker K, Mattick JS (1991) Touchdown” PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res 19(14):4008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dray S, Dufour AB, Chessel D (2007) The ade4 package-II: two-table and K-table methods. R News 7(2):47–52

    Google Scholar 

  • Dufresne F, Stift M, Vergilino R, Mable BK (2014) Recent progress and challenges in population genetics of polyploid organisms: an overview of current state-of-the-art molecular and statistical tools. Mol Ecol 23:40–69

    Article  PubMed  Google Scholar 

  • Ellstrand NC (1992) Gene flow by pollen: implications for plant conservation genetics. Oikos 63(1):77–86

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131(2):479–491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Faegri K, Van der Pijl L (1979) The principles of pollination ecology. Pergamon Press, Oxford

    Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164(4):1567–1587

    CAS  PubMed  PubMed Central  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null allele. Mol Ecol Notes 7:574–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldenberg R, Baumgratz JFA, Souza MLDR (2012) Taxonomia de Melastomataceae no Brasil: retrospectiva, perspectivas e chave de identificação para os gêneros. Rodriguésia 63:145–161

    Article  Google Scholar 

  • Guimarães PJF, Martins AB (1997) Tibouchina sect. Pleroma (D.Don) Cogn. (Melastomataceae) no estado de São Paulo. Rev Bras Bot 2(1):11–33

    Article  Google Scholar 

  • Hall P, Chase MR, Bawa KS (1994) Low genetic variation but high population differentiation in a common tropical forest tree species. Conserv Biol 8(2):471–482

    Article  Google Scholar 

  • Hardy OJ, Maggia L, Bandou E et al (2006) Fine-scale genetic structure and gene dispersal inferences in 10 neotropical tree species. Mol Ecol 15:559–571

    Article  CAS  PubMed  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  CAS  PubMed  Google Scholar 

  • Joly CA, Assis MA, Bernacci LC et al (2012) Florística e fitossociologia em parcelas permanentes da Mata Atlântica do sudeste do Brasil ao longo de um gradiente altitudinal. Biota Neotrop 12(1):123–145

    Article  Google Scholar 

  • Jombart T (2008) Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405

    Article  CAS  PubMed  Google Scholar 

  • Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones OR, Wang J (2010) COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Resour 10:551–555

    Article  PubMed  Google Scholar 

  • Jordano P, Godoy JA (2000) RAPD variation and population genetic structure in Prunus mahaleb (Rosaceae), an animal-dispersed tree. Mol Ecol 9:1293–1305

    Article  CAS  PubMed  Google Scholar 

  • Kraj W, Sztorc A (2009) Genetic structure and variability of phenological forms in the European beech (Fagus sylvatica L. Ann For Sci 66:203–209

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. Elsevier Science B.V, Amsterdam

    Google Scholar 

  • Lorenzi H (1992) Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil. Editora Plantarum Ltda, Nova Odessa

    Google Scholar 

  • Loveless MD, Hamrick JL (1984) Ecological determinants of genetic structure in plant populations. Annu Rev Ecol Syst 15(1):65–95

    Article  Google Scholar 

  • Lynch M (1990) The similarity index and DNA fingerprinting. Mol Biol Evol 7:478–484

    CAS  PubMed  Google Scholar 

  • Misiewicz TM, Fine PVA (2014) Evidence for ecological divergence across a mosaic of soil types in an Amazonian tropical tree: Protium subserratum (Burseraceae. Mol Ecol 23:2543–2558

    Article  PubMed  Google Scholar 

  • Morellato LP, Talora DC, Takahasi A, Bencke CC, Romera EC, Zipparro VB (2000) Phenology of Atlantic rainforest trees: a comparative study. Biotropica 32(4b):811–823

    Article  Google Scholar 

  • Obbard DJ, Harris SA, Pannell JR (2006) Simple allelic-phenotype diversity and differentiation statistics for allopolyploids. Heredity 97(4):296–303

    Article  CAS  PubMed  Google Scholar 

  • Ohsawa T, Ide Y (2008) Global patterns of genetic variation in plant species along vertical and horizontal gradients on mountains. Glob Ecol Biogeogr 17:152–163

    Article  Google Scholar 

  • Ohsawa T, Tsuda Y, Saito Y, Sawada H, Ide Y (2007) Altitudinal genetic diversity and differentiation of Quercus crispula in the Chichibu Mountains, Central Japan. Int J Plant Sci 168(3):333–340

    Article  Google Scholar 

  • Pereira AC, Silva JB, Goldenberg R, Melo GA, Varassin IG (2011) Flower color change accelerated by bee pollination in Tibouchina (Melastomataceae). Flora 206:491–497

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quiroga MP, Premoli AC (2007) Genetic patterns in Podocarpus parlatorei reveal the long-term persistence of coldtolerant elements in the southern Yungas. J Biogeogr 34:447–455

    Article  Google Scholar 

  • Reis TS, Ciampi-Guillardi M, Bajay MM, Souza AP, Santos FAM (2015) Elevation as a barrier: genetic structure for an Atlantic rain forest tree (Bathysa australis) in the Serra do Mar mountain range, SE Brazil. Ecol Evol 5(9):1919–1931

    Article  PubMed  PubMed Central  Google Scholar 

  • Renner SS (1989) A survey of reproductive biology in neotropical Melastomataceae and Memecylaceae. Ann Mo Bot Gard 76:469–518

    Article  Google Scholar 

  • Renner SS (1993) Phylogeny and classification of the Melastomataceae and Memecylaceae. Nord J Bot 13:519–540

    Article  Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labelling of PCR fragments. Nat Biotechnol 18:233–234

    Article  CAS  PubMed  Google Scholar 

  • Sebbenn AM, Siqueira ACMF, Gurgel GLMA, Angerami EMRA (2000) Variabilidade genética e interação genótipo x locais em jequitibá-rosa—Cariniana legalis (Mart.) O. Ktze. Rev Inst Florest 12(1):13–23

    Google Scholar 

  • Semagn K, Bjornstad A, Stedje B, Bekele E (2000) Comparison of multivariate methods for the analysis of genetic resources and adaptation in Phytolacca dodecandra using RAPD. Theor Appl Genet 101(7):1145–1154

    Article  CAS  Google Scholar 

  • Shi MM, Michalski SG, Chen XY, Durka W (2011) Isolation by elevation: genetic structure at neutral and putatively non-neutral loci in a dominant tree of subtropical forests, Castanopsis eyrei. PLoS One 6(6):e21302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silveira FAO, Fernandes GW, Lemos-Filho JP (2013) Seed and seedling ecophysiology of neotropical Melastomataceae: implications for conservation and restoration of savannas and rainforests. Ann Mo Bot Gard 99(1):82–99

    Article  Google Scholar 

  • Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236(4803):787–792

    Article  CAS  PubMed  Google Scholar 

  • Tabarelli M, Mantovani W (1999) A riqueza da floresta Atlântica de encosta no estado de São Paulo (Brasil). R Bras. Biol 59(2):239–250

    Google Scholar 

  • Thomas G, Joseph L, Varghese G, Kalyanaraman S, Kuriachan P (2001) Analysis of phenotypic and genetic variations among populations of Oryza malampuzhaensis show evidence of altitude-dependent genetic changes. Can. J Botany 79:1090–1098

    Article  CAS  Google Scholar 

  • Todzia CA, Almeida F (1991) A revision of Tibouchina sect. Lepidotae (Melastomataceae: Tibouchinae. Proc Calif Acad Sci 47(6):175–206

    Google Scholar 

  • Totland Ø (1993) Pollination in alpine Norway: flowering phenology, insect visitors, and visitation rates in two plant communities. Can. J Botany 71:1072–1079

    Google Scholar 

  • Veloso HP, Rangel-Filho ALR, Lima JCA (1991) Classificação da vegetação brasileira adaptada a um sistema universal. IBGE, Rio de Janeiro

    Google Scholar 

  • Wang J, Scribner KT (2014) Parentage and sibship inference from markers in polyploids. Mol Ecol Resour 14:541–553

    Article  PubMed  Google Scholar 

  • Willi Y, Buskirk JV, Hoffmann AA (2006) Limits to the adaptive potential of small populations. Annu Rev Ecol Evol S 37:433–458

    Article  Google Scholar 

  • Williams JH, Arnold ML (2001) Sources of genetic structure in the woody perennial Betula occidentalis. Int J Plant Sci 162:1097–1109

    Article  CAS  Google Scholar 

  • Yan XB, Guo YX, Zhao C, Liu FY, BR L (2009) Intra-population genetic diversity of two wheatgrass species along altitude gradients on the Qinghai-Tibetan Plateau: its implication for conservation and utilization. Conserv Genet 10(2):359–367

    Article  Google Scholar 

  • Zaia JE, Takaki M (1998) Estudo da germinação de sementes de espécies arbóreas pioneiras: Tibouchina pulchra Cong. e Tibouchina granulosa Cong. (Melastomataceae. Acta Bot Bras 12(3):221–229

    Article  Google Scholar 

  • Zhao N, Gao Y, Wang J, Ren A, Xu H (2006) RAPD diversity of Stipa grandis populations and its relationship with some ecological factors. Acta Ecol Sin 26(5):1312–1318

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors kindly thank the help of our colleagues in the field and lab: Cristiano Silva, Marcelo M. Egea, Rafael S. Oliveira, and Fernanda Piccolo. We also thank Paulo E. Oliveira and two anonymous reviewers for the review of an early version of the manuscript and BSc, Giovana Maranhão Bettiol for helping with Fig. 1. We thank São Paulo Research Foundation (FAPESP) for the scholarship provided to V. L. G. B. (grant #2010/51494-5) and for the project financial support (grants #2008/52197-4 and #2012/50425-5). A. P. S. and M. S. received research fellowship from CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico). This work was supported by CNPq (grants #131969/2008-0 to V. L. G. B. and #302452/2008-7 to M. S.) and by the FAPESP as part of the Thematic Project Functional Gradient (grant #03/12595-7), within the BIOTA/FAPESP Program—The Biodiversity Virtual Institute (http://www.biota.org.br).

Data archiving statement

Data would be deposited in the Dryad repository (http://datadryad.org/) after acceptance for review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinícius L. G. Brito.

Additional information

Communicated by D. Grattapaglia

Electronic supplementary material

ESM 1

(DOC 1258 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brito, V.L.G., Mori, G.M., Vigna, B.B.Z. et al. Genetic structure and diversity of populations of polyploid Tibouchina pulchra Cogn. (Melastomataceae) under different environmental conditions in extremes of an elevational gradient. Tree Genetics & Genomes 12, 101 (2016). https://doi.org/10.1007/s11295-016-1059-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-016-1059-y

Keywords

Navigation