Tree Genetics & Genomes

, 12:94 | Cite as

Transcriptome analysis of the male-to-hermaphrodite sex reversal induced by low temperature in papaya

Original Article
Part of the following topical collections:
  1. Gene Expression


Papaya (Carica papaya L.) is a trioecious plant species, producing three sex forms, male, female, and hermaphrodite. Although the major sex types are genetically determined, the phenotypic sex expression of papaya is influenced by environmental factors. We investigated differential gene expression analysis between the non-functional rudimentary pistils from normal male flowers and developed and functional pistils from the male-to-hermaphrodite sex reversal flowers induced by low temperature aiming to understanding the gene regulatory network that determinates the phenotypic sex expression in papaya. Our differential gene expression analysis revealed 1756 differentially expressed genes between normal male and male-to-hermaphrodite sex reversal flowers. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) pathway enrichment analysis showed transcription factors, flower development, histone H3-K9 methylation, and plant hormone signal transduction were among the most significantly enriched GO terms and KEGG pathways. Small RNA analysis was also performed on the pistils from normal male and the male-to-hermaphrodite sex reversal flowers. Our result showed the 24 nt small RNAs were the most abundant in the pistils from both normal and sex reversal flowers, followed by 21 nt small RNAs. We detected expression of 40 plant-conserved miRNAs and 14 papaya-specific miRNAs in the pistils from one or both normal and sex reversal flowers. Sixteen miRNAs exhibited high-expression level and ten of them showed differential expression between the normal male and the male-to-hermaphrodite sex reversal flowers. Our results suggested the male-to-hermaphrodite sex reversal was likely caused by silencing the gynoecium suppression function on the sex determination pathway through epigenetic modification.


Carica papaya Sex determination Sex reversal Differential gene expression Small RNA 



This work was supported by the grant 2015 N20002-1 from the Department of Science and Technology in Fujian Province and startup fund from Fujian Agriculture and Forestry University.

Data archiving statement

All the sequence data reported here are archived and publicly available at the National Center for Biotechnology Information (NCBI; The RNA-Seq sequences can be accessed through NCBI SRA database under SRA ID SRP075300. The small RNA sequences can be accessed through NCBI SRA database under SRA ID SRP075300.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11295_2016_1055_MOESM1_ESM.xlsx (14 kb)
ESM 1 (XLSX 13 kb)
11295_2016_1055_MOESM2_ESM.xlsx (180 kb)
ESM 2 (XLSX 179 kb)
11295_2016_1055_MOESM3_ESM.docx (48 kb)
ESM 3 (DOCX 47 kb)
11295_2016_1055_MOESM4_ESM.xlsx (15 kb)
ESM 4 (XLSX 15 kb)
11295_2016_1055_MOESM5_ESM.xlsx (19 kb)
ESM 5 (XLSX 18 kb)
11295_2016_1055_MOESM6_ESM.xlsx (27 kb)
ESM 6 (XLSX 26 kb)
11295_2016_1055_MOESM7_ESM.docx (18 kb)
ESM 7 (DOCX 18 kb)
11295_2016_1055_MOESM8_ESM.xlsx (10 kb)
ESM 8 (XLSX 10 kb)
11295_2016_1055_MOESM9_ESM.xlsx (11 kb)
ESM 9 (XLSX 10 kb)
11295_2016_1055_MOESM10_ESM.xlsx (18 kb)
ESM 10 (XLSX 18 kb)
11295_2016_1055_MOESM11_ESM.xlsx (14 kb)
ESM 11 (XLSX 14 kb)


  1. Anders S, Pyl PT, Huber W (2015) HTSeq—a python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169. doi: 10.1093/bioinformatics/btu638 CrossRefPubMedGoogle Scholar
  2. Arnaud N, Pautot V (2014) Ring the BELL and tie the KNOX: roles for TALEs in gynoecium development. Plant Evol Dev 5:93. doi: 10.3389/fpls.2014.00093 Google Scholar
  3. Aryal R, Yang X, Yu Q, et al. (2012) Asymmetric purine-pyrimidine distribution in cellular small RNA population of papaya. BMC Genomics 13:682CrossRefPubMedPubMedCentralGoogle Scholar
  4. Awada M (1958) Relationships of minimum temperature and growth rate with sex expression of papaya plants (Carica papaya L.). Hawaii Agricultural Experiment Station Technical Bulletin 38, University of Hawaii, HonoluluGoogle Scholar
  5. Awada M (1961) Soil moisture tension in relation of fruit types of papaya plants. Hawaii Farm Sci 10:7–8Google Scholar
  6. Awada M, Ikeda WS (1957) Effects of water and nitrogen application on composition, growth, sugars in fruits, yield, and sex expression of the papaya plants (Carica papaya L.). Hawaii Agricultural Experiment Station Technical Bulletin 33, University of Hawaii, Honolulu.Google Scholar
  7. Benková E, Michniewicz M, Sauer M, et al. (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602CrossRefPubMedGoogle Scholar
  8. Ceccato L, Masiero S, Sinha Roy D, et al. (2013) Maternal control of PIN1 is required for female gametophyte development in Arabidopsis. PLoS One. doi: 10.1371/journal.pone.0066148 PubMedPubMedCentralGoogle Scholar
  9. Cedar H, Bergman Y (2009) Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 10:295–304. doi: 10.1038/nrg2540 CrossRefPubMedGoogle Scholar
  10. Cucinotta M, Colombo L, Roig-Villanova I (2014) Ovule development, a new model for lateral organ formation. Front Plant Sci doi. doi: 10.3389/fpls.2014.00117 Google Scholar
  11. Curaba J, Singh MB, Bhalla PL (2014) miRNAs in the crosstalk between phytohormone signalling pathways. J Exp Bot 65:1425–1438. doi: 10.1093/jxb/eru002 CrossRefPubMedGoogle Scholar
  12. Dai X, Zhao PX (2001) psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res 39:W155–W159CrossRefGoogle Scholar
  13. Du Z, Zhou X, Ling Y, et al. (2010) agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 38:W64–W70. doi: 10.1093/nar/gkq310 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Gardner PP, Daub J, Tate J, et al. (2011) Rfam: Wikipedia, clans and the “decimal” release. Nucleic Acids Res 39:D141–D145. doi: 10.1093/nar/gkq1129 CrossRefPubMedGoogle Scholar
  15. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158. doi: 10.1093/nar/gkm952 CrossRefPubMedGoogle Scholar
  16. Hawkins C, Liu Z (2014) A model for an early role of auxin in Arabidopsis gynoecium morphogenesis. Front Plant Sci 5:327. doi: 10.3389/fpls.2014.00327 PubMedPubMedCentralGoogle Scholar
  17. Hay A, Tsiantis M (2010) KNOX genes: versatile regulators of plant development and diversity. Dev Camb Engl 137:3153–3165. doi: 10.1242/dev.030049 Google Scholar
  18. Hofmeyr JDJ (1938) Genetical studies of Carica papaya L. I. The inheritance and relation of sex and certain plant characteristics. II. Sex reversal and sex forms. So Afr Dept Agri And Sci Bul 187:64Google Scholar
  19. Hu Y, Bao F, Li J (2000) Promotive effect of brassinosteroids on cell division involves a distinct CycD3-induction pathway in Arabidopsis. Plant J Cell Mol Biol 24:693–701CrossRefGoogle Scholar
  20. Husbands AY, Benkovics AH, Nogueira FTS, et al. (2015) The ASYMMETRIC LEAVES complex employs multiple modes of regulation to affect adaxial-abaxial patterning and leaf complexity. Plant Cell 27:3321–3335. doi: 10.1105/tpc.15.00454 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Iorns MJ (1908) Observations on change of sex in Carica papaya. Science 28:125–126. doi: 10.1126/science.28.708.125 CrossRefPubMedGoogle Scholar
  22. Jackson JP, Lindroth AM, Cao X, Jacobsen SE (2002) Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416:556–560. doi: 10.1038/nature731 CrossRefPubMedGoogle Scholar
  23. Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33:245–254CrossRefPubMedGoogle Scholar
  24. Janousek B, Siroký J, Vyskot B (1996) Epigenetic control of sexual phenotype in a dioecious plant, Melandrium album. Mol Gen Genet MGG 250:483–490CrossRefPubMedGoogle Scholar
  25. Jiang Z, Liu X, Peng Z, et al. (2010) AHD2.0: an update version of Arabidopsis hormone database for plant systematic studies. Nucleic Acids Res. doi: 10.1093/nar/gkq1066 Google Scholar
  26. Juarez MT, Kui JS, Thomas J, et al. (2004) microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature 428:84–88. doi: 10.1038/nature02363 CrossRefPubMedGoogle Scholar
  27. Kumar R, Kushalappa K, Godt D, et al. (2007) The Arabidopsis BEL1-LIKE HOMEODOMAIN proteins SAW1 and SAW2 act redundantly to regulate KNOX expression spatially in leaf margins. Plant Cell 19:2719–2735. doi: 10.1105/tpc.106.048769 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kumar V (1952) Studies in Carica papaya Linn. II. Sex-expression in some varieties. Indian J Hort 9:20–28Google Scholar
  29. Kuroki S, Matoba S, Akiyoshi M, et al. (2013) Epigenetic regulation of mouse sex determination by the histone demethylase Jmjd1a. Science 341:1106–1109. doi: 10.1126/science.1239864 CrossRefPubMedGoogle Scholar
  30. Lamesch P, Berardini TZ, Li D, et al. (2012) The Arabidopsis information resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res 40:D1202–D1210. doi: 10.1093/nar/gkr1090 CrossRefPubMedGoogle Scholar
  31. Lange AH (1961) Factors affecting sex change in the flowers of Carica papaya L. Amer Soc Hort Sci Proc 77:252–264Google Scholar
  32. Langmead B (2010) Aligning short sequencing reads with bowtie. Curr Protoc Bioinforma Ed Board Andreas Baxevanis Al CHAPTER:unit-11.7. doi: 10.1002/0471250953.bi1107s32
  33. Liu Q, Yao X, Pi L, et al. (2009a) The ARGONAUTE10 gene modulates shoot apical meristem maintenance and establishment of leaf polarity by repressing miR165/166 in Arabidopsis. Plant J Cell Mol Biol 58:27–40. doi: 10.1111/j.1365-313X.2008.03757.x CrossRefGoogle Scholar
  34. Liu Q, Zhang Y-C, Wang C-Y, et al. (2009b) Expression analysis of phytohormone-regulated microRNAs in rice, implying their regulation roles in plant hormone signaling. FEBS Lett 583:723–728. doi: 10.1016/j.febslet.2009.01.020 CrossRefPubMedGoogle Scholar
  35. Liu Z, Moore PH, Ma H, et al. (2004) A primitive Y chromosome in papaya marks incipient sex chromosome evolution. Nature 427:348–352. doi: 10.1038/nature02228 CrossRefPubMedGoogle Scholar
  36. Ming R, Hou S, Feng Y, et al. (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991–996. doi: 10.1038/nature06856 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Ming R, Yu Q, Moore PH (2007) Sex determination in papaya. Semin Cell Dev Biol 18:401–408CrossRefPubMedGoogle Scholar
  38. Nogueira FTS, Madi S, Chitwood DH, et al. (2007) Two small regulatory RNAs establish opposing fates of a developmental axis. Genes Dev 21:750–755. doi: 10.1101/gad.1528607 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Nole-Wilson S, Krizek BA (2006) AINTEGUMENTA contributes to organ polarity and regulates growth of lateral organs in combination with YABBY genes. Plant Physiol 141:977–987. doi: 10.1104/pp.106.076604 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Nole-Wilson S, Rueschhoff EE, Bhatti H, Franks RG (2010) Synergistic disruptions in seuss cyp85A2 double mutants reveal a role for brassinolide synthesis during gynoecium and ovule development. BMC Plant Biol 10:198. doi: 10.1186/1471-2229-10-198 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Pekker I, Alvarez JP, Eshed Y (2005) Auxin response factors mediate Arabidopsis organ asymmetry via modulation of KANADI activity. Plant Cell 17:2899–2910. doi: 10.1105/tpc.105.034876 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Rivera C, Saavedra F, Alvarez F, et al. (2015) Methylation of histone H3 lysine 9 occurs during translation. Nucleic Acids Res 43:9097–9106. doi: 10.1093/nar/gkv929 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Rodriguez RE, Mecchia MA, Debernardi JM, et al. (2010) Control of cell proliferation in Arabidopsis thaliana by microRNA miR396. Dev Camb Engl 137:103–112. doi: 10.1242/dev.043067 Google Scholar
  44. Rose NR, Klose RJ (2014) Understanding the relationship between DNA methylation and histone lysine methylation. Biochim Biophys Acta 1839:1362–1372. doi: 10.1016/j.bbagrm.2014.02.007 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Scofield S, Dewitte W, Murray JA (2008) A model for Arabidopsis class-1 KNOX gene function. Plant Signal Behav 3:257–259CrossRefPubMedPubMedCentralGoogle Scholar
  46. Sessions A, Nemhauser JL, McColl A, et al. (1997) ETTIN patterns the Arabidopsis floral meristem and reproductive organs. Dev Camb Engl 124:4481–4491Google Scholar
  47. Shao C, Li Q, Chen S, et al. (2014) Epigenetic modification and inheritance in sexual reversal of fish. Genome Res 24:604–615. doi: 10.1101/gr.162172.113 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Smaczniak C, Immink RGH, Muiño JM, et al. (2012) Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development. Proc Natl Acad Sci 109:1560–1565. doi: 10.1073/pnas.1112871109 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Storey WB (1953) Genetics of the papaya. J Hered 44:70–78Google Scholar
  50. Storey WB (1958) Modifications of sex expression in papaya. Hort Adv 2:49–60Google Scholar
  51. Storey WB (1967) Theory of the derivations of the unisexual flowers of caricaceae. Agron Trop 17:273–321Google Scholar
  52. Storey WB (1969) Pistillate papaya flower: a morphological anomaly. Science 163:401–405. doi: 10.1126/science.163.3865.401 CrossRefPubMedGoogle Scholar
  53. Supek F, Bošnjak M, Škunca N, Šmuc T (2011) REVIGO summarizes and visualizes long lists of Gene ontology terms. PLoS One 6:e21800. doi: 10.1371/journal.pone.0021800 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Tachibana M, Nozaki M, Takeda N, Shinkai Y (2007) Functional dynamics of H3K9 methylation during meiotic prophase progression. EMBO J 26:3346–3359. doi: 10.1038/sj.emboj.7601767 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Trapnell C, Roberts A, Goff L, et al. (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and cufflinks. Nat Protoc 7:562–578. doi: 10.1038/nprot.2012.016 CrossRefPubMedPubMedCentralGoogle Scholar
  56. von Goethe JW (1790) Versuch die Metamorphose der Pflanzen zu erklären. C. W. Ettinger, GothaGoogle Scholar
  57. Wang J, Na J-K, Yu Q, et al. (2012) Sequencing papaya X and Yh chromosomes reveals molecular basis of incipient sex chromosome evolution. Proc Natl Acad Sci U S A 109:13710–13715. doi: 10.1073/pnas.1207833109 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Wang L, Feng Z, Wang X, et al. (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinforma Oxf Engl 26:136–138. doi: 10.1093/bioinformatics/btp612 CrossRefGoogle Scholar
  59. Wang L, Gu X, Xu D, et al. (2011) miR396-targeted AtGRF transcription factors are required for coordination of cell division and differentiation during leaf development in Arabidopsis. J Exp Bot 62:761–773. doi: 10.1093/jxb/erq307 CrossRefPubMedGoogle Scholar
  60. Westergaard M (1958) The mechanism of sex determination in dioecious flowering plants. Adv Genet 9:217–281PubMedGoogle Scholar
  61. Wu G, Park MY, Conway SR, et al. (2009) The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138:750–759. doi: 10.1016/j.cell.2009.06.031 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Wu J, Mao X, Cai T, et al. (2006) KOBAS server: a web-based platform for automated annotation and pathway identification. Nucleic Acids Res 34:W720–W724. doi: 10.1093/nar/gkl167 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Wynn AN, Seaman AA, Jones AL, Franks RG (2014) Novel functional roles for PERIANTHIA and SEUSS during floral organ identity specification, floral meristem termination, and gynoecial development. Front Plant Sci 5:130. doi: 10.3389/fpls.2014.00130 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Yampolsky C (1925) The origin of sex in the phanerogamic flora. Genetica 7:521CrossRefGoogle Scholar
  65. Yang X, Li L (2011) miRDeep-P: a computational tool for analyzing the microRNA transcriptome in plants. Bioinforma Oxf Engl 27:2614–2615. doi: 10.1093/bioinformatics/btr430 Google Scholar
  66. Yu Q, Navajas-Pérez R, Tong E, et al. (2008) Recent origin of dioecious and Gynodioecious Y chromosomes in papaya. Trop Plant Biol 1:49–57. doi: 10.1007/s12042-007-9005-7 CrossRefGoogle Scholar
  67. Zhang H, Jin J, Tang L, et al. (2011) PlantTFDB 2.0: update and improvement of the comprehensive plant transcription factor database. Nucleic Acids Res 39:D1114–D1117. doi: 10.1093/nar/gkq1141 CrossRefPubMedGoogle Scholar
  68. Zhang W, Wang X, Yu Q, et al. (2008) DNA methylation and heterochromatinization in the male-specific region of the primitive Y chromosome of papaya. Genome Res 18:1938–1943. doi: 10.1101/gr.078808.108 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Zhu X, Li X, Chen W, et al. (2012) Evaluation of new reference genes in papaya for accurate transcript normalization under different experimental conditions. PLoS One 7:e44405. doi: 10.1371/journal.pone.0044405 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Hai Lin
    • 1
  • Zhenyang Liao
    • 1
  • Lingmao Zhang
    • 1
  • Qingyi Yu
    • 1
    • 2
    • 3
  1. 1.Center for Genomics and Biotechnology, Fujian Provincial Key laboratory of Haixia applied plant systems biology, Haixia Institute of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
  2. 2.Texas A&M AgriLife Research Center at DallasTexas A&M University SystemDallasUSA
  3. 3.Department of Plant Pathology & MicrobiologyTexas A&M UniversityCollege StationUSA

Personalised recommendations