Skip to main content

Advertisement

Log in

Transcriptome reveals senescing callus tissue of Aquilaria malaccensis, an endangered tropical tree, triggers similar response as wounding with respect to terpenoid biosynthesis

  • Short Communication
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Aquilaria malaccensis is an endangered tree species listed in the Appendix II of CITES. It is a main source of highly valuable resinous wood known as agarwood, which is rich in secondary metabolites. De novo assembly of sequences produced by transcriptome sequencing using next-generation sequencing technologies offers a rapid approach to obtain expressed gene sequences for non-model organisms such as Aquilaria. To investigate the genes and pathways that might control molecular mechanism of A. malaccensis under controlled environment, we sequenced two transcriptome libraries constructed from mRNAs of healthy and senescing callus tissues using Illumina sequencing. We obtained 200,062,275 and 166,544,202 reads for healthy and senescing callus libraries, respectively. We compiled 231,594 transcripts and identified 107,593 transcripts by similarity analysis against the National Center for Biotechnology Information (NCBI) public database. A total of 96,743 transcripts were functionally annotated using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. We assigned 46,076 of the transcripts to a total of 144 KEGG pathways. We focused on genes identified as contributing to fragrant compound synthesis and defense response pathways, which are important pathways leading to agarwood compound formation. This study provides abundant transcriptomic data and valuable sequence resources for future genomic studies on A. malaccensis. This is the first report of callus transcriptome from A. malaccensis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Bergemann TL, Wilson J (2011) Proportion statistics to detect differentially expressed genes: a comparison with log-ratio statistics. BMC Bioinf 12(1):228

    Article  Google Scholar 

  • Chen CH, Kuo TCY, Yang MH, Chien TY, Chu MJ, Huang LC, Chen CY, Lo HF, Jeng ST, Chen LFO (2014) Identification of cucurbitacins and assembly of a draft genome for Aquilaria agallocha. BMC Genomics 15:578

    Article  PubMed  PubMed Central  Google Scholar 

  • CITES (2014) Appendix II of convention on international trade in endangered species of wild fauna and flora. http://www.cites.org/eng/app/appendices.php

  • Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  CAS  PubMed  Google Scholar 

  • Gao ZH, Wei JH, Yang Y, Zhang Z, Zhao WT (2012) Selection and validation of reference genes for studying stress-related agarwood formation of Aquilaria sinensis. Plant Cell Rep 31:1759–1768

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • IUCN Red List (2014) The IUCN red list of threatened species. Version 2014.2. www.iucnredlist.org

  • Jayaraman S, Mohamed R (2015) Crude extract of Trichoderma elicits agarwood substances in cell suspension culture of the tropical tree, Aquilaria malaccensis Lam. Turk J Agric For 39(2):163–173. doi:10.3906/tar-1404-63

    Article  Google Scholar 

  • Jayaraman S, Daud NH, Halis R, Mohamed R (2014) Effects of plant growth regulators, carbon sources and pH values on callus induction in Aquilaria malaccensis leaf explants and characteristics of the resultant calli. J For Res 25(3):535–540

    Article  CAS  Google Scholar 

  • Jiang H, Wong WH (2009) Statistical inferences for isoform expression in RNA-Seq. Bioinformatics 25(8):1026–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jong PL, Tsan P, Mohamed R (2014) Gas chromatography-mass spectrometry analysis of agarwood extracts from mature and juvenile Aquilaria malaccensis. Int J Agric Biol 16:644–648

    CAS  Google Scholar 

  • Keeling CI, Bohlmann J (2006) Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens. New Phytol 170:657–675

    Article  CAS  PubMed  Google Scholar 

  • Kumeta Y, Ito M (2010) Characterization of δ-guaiene synthases from cultured cells of Aquilaria, responsible for the formation of the sesquiterpenes in agarwood. Plant Physiol 154:1998–2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  PubMed  PubMed Central  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup (2009) The sequence alignment/map (SAM) format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu J, Xu Y, Zhang Z, Wei J (2015) Hydrogen peroxide promotes programmed cell death and salicylic acid accumulation during the induced production of sesquiterpenes in cultured cell suspensions of Aquilaria sinensis. Funct Plant Biol 42(4):337–346

    Article  CAS  Google Scholar 

  • Mohamed R, Jong PL, Kamziah AK (2014) Fungal inoculation induces agarwood in young Aquilaria malaccensis trees in the nursery. J For Res 25(1):201–204

    Article  CAS  Google Scholar 

  • Naef R (2011) The volatile and semi-volatile constituents of agarwood, the infected heartwood of Aquilaria species: a review. Flavour Frag J 26:73–87

    Article  CAS  Google Scholar 

  • Ng LT, Chang YS, Kadir AA (1997) A review on agar (gaharu) producing Aquilaria species. J Trop For Prod 2(2):272–285

    Google Scholar 

  • Okudera Y, Ito M (2009) Production of agarwood fragrant constituents in Aquilaria calli and cell suspension cultures. Plant Biotechnol 26(3):307–315

    Article  CAS  Google Scholar 

  • Pertea G, Huang X, Liang F, Antonescu V, Sultana R, Karamycheva S, Lee Y, White J, Cheung F, Parvizi B, Tsai J, Quackenbush J (2003) TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics 19:651–652

    Article  CAS  PubMed  Google Scholar 

  • Pojanagaroon S, Kaewrak C (2005) Mechanical methods to stimulate aloes wood formation in Aquilaria crassna Pierre ex H. LEC. (Kritsana) trees. In: Jatisatienr A, Paratasilpin T, Elliott S, Anusarnsunthorn V, Wedge D, Craker LE, Gardner ZE (eds) WOCMAP III congress on medicinal and aromatic plants: conservation, cultivation and sustainable use of medicinal and aromatic plants, vol 2, pp 161–166

  • Qi SY, He ML, Lin LD, Zhang CH, Hu LJ, Zhang HZ (2005) Production of 2-(2-phenylethyl) chromones in cell suspension cultures of Aquilaria sinensis. Plant Cell Tissue Organ Cult 83(2):217–221

    Article  CAS  Google Scholar 

  • Thanh LV, Do TV, Son NH, Sato T, Kozan O (2015) Impacts of biological, chemical and mechanical treatments on sesquiterpene content in stems of planted Aquilaria crassna trees. Agrofor Syst. doi:10.1007/s10457-015-9829-3

    Google Scholar 

  • Vranová E, Coman D, Gruissem W (2013) Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annu Rev Plant Biol 64:665–700

    Article  PubMed  Google Scholar 

  • Wang L, Feng Z, Wang X, Wang X, Zhang X (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26(1):136–138

    Article  PubMed  Google Scholar 

  • Wink M (2011) Annual plant reviews, biochemistry of plant secondary metabolism. Wiley-Blackwell, UK, p 464

    Google Scholar 

  • Xie Y, Wu G, Tang J, Luo R, Patterson J, Liu S, Huang W, He G, Gu S, Li S, Zhou X, Lam T, Li Y, Xu X, Wong GK, Wang J (2014) SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads. Bioinformatics 30:1660–1666

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Zhang Z, Wang M, Wei J, Chen H, Gao Z, Sui C, Luo H, Zhang X, Yang Y, Meng H, Li W (2013) Identification of genes related to agarwood formation: transcriptome analysis of healthy and wounded tissues of Aquilaria sinensis. BMC Genomics 14(1):227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yagura T, Ito M, Kiuchi F, Honda G (2003) Four new 2-(2-phenylethyl) chromone derivatives from withered wood of Aquilaria sinensis. Chem Pharm Bull 51:560–564

    Article  CAS  PubMed  Google Scholar 

  • Yagura T, Shibayama N, Ito M, Kiuchi F, Honda G (2005) Three novel diepoxy tetrahydrochromones from agarwood artificially produced by intentional wounding. Tetrahedron Lett 46:4395–4398

    Article  CAS  Google Scholar 

  • Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L, Wang J (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34:W293–W297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu F, Utsumi R (2009) Diversity, regulation, and genetic manipulation of plant mono-and sesquiterpenoid biosynthesis. Cell Mol Life Sci 66(18):3043–3052

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the Malaysia Genome Institute (Microarray) for providing the Bioanalyzer service and Prof. Chuck Cannon of Xishuangbanna Tropical Botanical Garden, China, for hosting a research attachment. A deep appreciation is also given to Zhang Di and Kwong Qi Bin for their bioinformatics advices and guidance and to two anonymous reviewers for their constructive comments. This project was supported by the Universiti Putra Malaysia Research University Grant Scheme (Project Nos. 03-01-09-0829RU and 03-02-11-1369RU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rozi Mohamed.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data Archiving Statement

Sequencing data are available through DDBJ DRA004069, BioProject PRJDB4215. They include 75-bp paired-end reads in BAM format for two samples that were run on an Illumina Hiseq2000 at the Michael Smith Genome Science Center, Canada, on April 2012. The samples were senescing (SAMD00040776) and healthy (SAMD00040775) calli growing on the same medium, collected after 35 and 20 days, respectively.

Additional information

Communicated by W. Ratnam

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table s1

(DOCX 24 kb)

Table s2

(DOCX 24 kb)

Table s3

(DOCX 25 kb)

Fig. s1

(DOCX 204 kb)

Fig. s2

(DOCX 61 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siah, C.H., Namasivayam, P. & Mohamed, R. Transcriptome reveals senescing callus tissue of Aquilaria malaccensis, an endangered tropical tree, triggers similar response as wounding with respect to terpenoid biosynthesis. Tree Genetics & Genomes 12, 33 (2016). https://doi.org/10.1007/s11295-016-0993-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-016-0993-z

Keywords

Navigation