Skip to main content

Recent landscape genomics studies in forest trees—what can we believe?

Abstract

Landscape genomics is potentially a powerful research field for discovery of genes underlying complex patterns of adaptation in forest ecosystems. The general approach is to search for associations between genetic variation in tree populations and environmental variation in the habitats these trees occupy. For example, environmental data from GIS databases can be associated with single nucleotide polymorphisms in genes for large samples of trees sampled from within environmentally heterogeneous landscapes. In this opinion paper, we seek to assess the commonality of recent landscape genomics studies in forest trees. When we compare results across different species, we find very few examples of the same genes being detected that associate to similar environmental variables. We also find the absence of commonality when we compare three studies in Norway spruce with similar experimental design. We thus argue that landscape genomics research in forest trees is in its infancy and currently reported that results should be viewed with caution. Further, improvements in study design and analyses of replicated studies will be needed before this very promising approach can be brought to application for managing forests under changing climate.

This is a preview of subscription content, access via your institution.

References

  1. Anderegg WRL, Kane JM, Anderegg LDL (2012) Consequences of widespread tree mortality triggered by drought and temperature stress. Nature climate change 3:30–36

    Article  Google Scholar 

  2. Allen CD (2009) Climate-induced forest dieback: an escalating global phenomenon? Unasylva 60:231–232

    Google Scholar 

  3. Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M et al (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manage 259:660–684

    Article  Google Scholar 

  4. Berry A, Kreitman M (1993) Molecular analysis of an allozyme cline alcohol-dehydrogenase in Drosophila melanogaster on the East coast of North-America. Genetics 134:869–893

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Birol I, Raymond A, Kackman SD, Pleasance S, Coope R et al (2013) Assembling the 20Gb white spruce (Picea glauca) genome from whole-genome shotgun sequencing data. Bioinformatics 29:1492–1497

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  6. Bragg JG, Supple MA, Andrew RL, Borevitz JO (2015) Genomic variation across landscapes: insights and applications. New Phytologist 207:953–967

    Article  PubMed  Google Scholar 

  7. Ćalić I (2015). Estimation of adaptive genetic variation in Norway spruce (Picea abies (L.) Karst) to climate change. (Doctoral dissertation, University of Florence-Italy). Retrieved from FLORE (FLOrence REsearch).Available online: https://flore.unifi.it/handle/2158/1008831

  8. Chen J, Kallman T, Ma X, Gyllenstrand N, Zaina G, Morgante M, Bousquet J, Eckert A, Wegrzyn J, Neale D, Lagercrantz U, Lascoux M (2012) Disentangling the roles of history and local selection in shapping clinal variation of allele frequencies and gene expression in Norway spruce (Picea abies). Genetics 191:865–881

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  9. Chhatre VE, Byram TD, Neale DB, Wegrzyn JL, Krutovsky KV (2013) Genetic structure and association mapping of adaptive and selective traits in the east Texas loblolly pine (Pinus taeda L.) breeding populations. Tree Genetics & Genomes 9:1161–1178

    Article  Google Scholar 

  10. Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X et al. (2007). Regional climate projections. In: Solomon S et al. (Eds). Climate change, Cambridge University Press, Cambridge, United Kingdom/New York, NY

  11. Coop G, Witonsky D, Di Rienzo A, Pritchard JK (2010) Using environmental correlations to identify loci underlying local adaptation. Genetics 185:1411–1423

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  12. Davis MB, Shaw RG, Etterson JR (2005) Evolutionary responses to changing climate. Ecology 86(7):1704–1714

    Article  Google Scholar 

  13. De Mita S, Thuillet A-C, Gay L et al (2013) Detecting selection along environmental gradients: analysis of eight methods and their effectiveness for outbreeding and selfing populations. Mol Ecol 22:1383–1399

    Article  PubMed  Google Scholar 

  14. De Kort H, Vandepitte K, Bruun HH, Closset-Kopp D, Honnay O, Mergeay J (2014) Landscape genomics and a common garden trial reveal adaptive differentiation to temperature across Europe in tree species Alnus glutinosa. Mol Ecol 23:4709–4721

    Article  PubMed  Google Scholar 

  15. De La Torre AR, Roberts DR, Aitken SN (2014) Genome-wide admixture and ecological niche modeling reveal the maintenance of species boundaries despite long history of interspecific gene flow. Mol Ecol 23:2046–2059

    Article  Google Scholar 

  16. Di Pierro EA, Mosca E, Rocchini D, Binelli G, Neale DB and La Porta N (2015). Population structure and adaptive genetic variation to climate in natural populations of Norway spruce (Picea abies [L.] Karst). Submitted to Tree Genetics and Genomes

  17. Eckert AJ, Van Heerwaarden J, Wegrzyn JL, Nelson CD, Ross-Ibarra J, Gonzalez-Martinez SC, Neale DB (2010a) Patterns of population structure and environmental associations to aridity across the range of loblolly pine (Pinus taeda L., Pinaceae). Genetics 185:969–982

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  18. Eckert AJ, Bower AD, Gonzalez-Martinez SC, Wegrzyn JL, Coop G, Neale DB (2010b) Back to nature: ecological genomics of loblolly pine (Pinus taeda, Pinaceae). Mol Ecol 19:3789–3805

    Article  CAS  PubMed  Google Scholar 

  19. Eckert AJ, Maloney PE, Vogler DR, Jensen CE, Mix AD, Neale DB (2015) Local adaptation at fine spatial scales: an example from sugar pine (Pinus lamertiana, Pinaceae). Tree Genetics and Genomes 11:42

    Article  Google Scholar 

  20. Frichot E, Schoville SD, Bouchard G, Francois O (2013) Testing for associations between loci and environmental gradients using latent factor mixed models. Mol Biol Evol 30:1687–1699

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  21. Geraldes A, Farzaneh N, Grassa CJ, McKnown A et al (2014) Landscape genomics of Populus trichocarpa: the role of hybridization, limited gene flow, and natural selection in shaping patterns of population structure. Evolution 68–11:3260–3280

    Article  Google Scholar 

  22. González-Martínez SC, Krutovsky K, Neale DB (2006) Forest-tree population genomics and adaptive evolution. New Phytologist 170:227–238

    Article  PubMed  Google Scholar 

  23. Grivet D, Sebastiani F, Alia R, Batailla T, Tone S, Zabal-Aguire M, Vendramin GG, González-Martínez SC (2011) Molecular footprints of local adaptation in two Mediterranean conifers. Mol Biol Evol 28(1):101–106

    Article  CAS  PubMed  Google Scholar 

  24. Günther T, Coop G (2013) Robust identification of local adaptation from allele frequencies. Genetics 195:205–220

    PubMed Central  Article  PubMed  Google Scholar 

  25. Haylock MR, Hofstra N, Tank AMGK, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res 113, D20119

    Article  Google Scholar 

  26. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatology 25:1965–1978

    Article  Google Scholar 

  27. Holderegger R, Buehler D, Gugerli F, Manel S (2010) Landscape genetics of plants. Trends Plant Sci 15:675–683

    Article  CAS  PubMed  Google Scholar 

  28. Holderegger R, Herrmann D, Poncet B et al (2008) Land ahead: using genome scans to identify molecular markers of adaptive relevance. Plant Ecology & Diversity 1:273–283

    Article  Google Scholar 

  29. Joost S, Bonin A, Bruford MW, Depres L, Conord C, Erhardt G, Taberlet P (2007) A spatial analysis method (SAM) to detect candidate loci for selection: towards a landscape genomics approach to adaptation. Mol Ecol 16:3955–3969

    Article  CAS  PubMed  Google Scholar 

  30. Keller SR, Levsen N, Olson MS, Tiffin P (2012) Local adaptation in the flowering-time gene network of balsam poplar, (Populus balsamifera L.) Mol. Biol. Evol 29(10):3143–3152

    CAS  Google Scholar 

  31. Kujala ST, Savolainen O (2012) Sequence variation patterns along a latitudinal cline in Scots pine (Pinus sylvestris): signs of clinal adaptation? Tree Genetics & Genomes 8:1451–1467

    Article  Google Scholar 

  32. Lotterhos KE, Whitlock MC (2014) Evaluation of demographic history and neutral parameterization on the performance of FST outlier tests. Mol Ecol 23:2178–2192

    PubMed Central  Article  PubMed  Google Scholar 

  33. Lotterhos KE, Whitlock MC (2015) The relative power of genome scans to detect local adaptation depends on sampling design and statistical method. Mol Ecol 24:1031–1046

    Article  PubMed  Google Scholar 

  34. Manel S, Schwartz M, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends in Ecology and Evolution 18:157–206

    Article  Google Scholar 

  35. Mosca E, Eckert AJ, Di Pierro EA, Rocchini D, La Porta N, Belletti P, Neale DB (2012) The geographical and environmental determinants of genetic diversity for four alpine conifers of the European Alps. Mol Ecol 21:5530–5545

    Article  CAS  PubMed  Google Scholar 

  36. Namroud MC, Beaulieu J, Juge N, Laroche J, Bousquet J (2008) Scanning the genome for gene single nucleotide polymorphisms involved in adaptive population differentiation in white spruce. Mol Ecol 17:3599–3613

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  37. Neale DB, Wegrzyn JL, Stevens KA, Zimin AV, Puiu D, Crepeau MW, Cardeno C, Koriabine M, Holtz-Morris AE, Liechty JD (2014) Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biol 15:R59

    PubMed Central  Article  PubMed  Google Scholar 

  38. Neteler M (2010) Estimating daily land surface temperatures in mountainous environments by reconstructed modis LST data. Remote Sens 2:333–351

    Article  Google Scholar 

  39. Neteler M, Bowman MH, Landa M, Metz M (2012) GRASS GIS: a multi-purpose open source GIS. Environ Model Software 31:124–130

    Article  Google Scholar 

  40. Nystedt B, Street NR, Wetterborn A, Zuccolo A et al (2013) The Norway spruce genome sequence and conifer genome evolution. Nature 497:579–584

    Article  CAS  PubMed  Google Scholar 

  41. Parisod C, Holderegger R (2012) Adaptive Landscape genetics: pitfalls and benefits. Mol Ecol 21:3644–3646

    Article  PubMed  Google Scholar 

  42. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick et al (2006) Principal components analyses corrects for stratification in genome-wide association studies. Nat Genet 38:904–909

    Article  CAS  PubMed  Google Scholar 

  43. Pritchard JK, Stephens M, Donelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Prunier J, Laroche J, Beaulieu J, Bousquet J (2011) Scanning the genome for gene SNPs related to climate adaptation and estimation selection at the molecular level in boreal black spruce. Mol Ecol 20:1702–1716

    Article  CAS  PubMed  Google Scholar 

  45. Prunier J, Gerardi S, Laroche J, Beaulieu J, Bousquet J (2012) Parallel and lineage-specific molecular adaptation to climate in boreal black spruce. Mol Ecol 21:4270–4286

    Article  CAS  PubMed  Google Scholar 

  46. Prunier J, Verta J-P, MacKay JJ (2015) Conifer genomics and adaptation: at the crossroads of genetic diversity and genome function. New Phytologist. doi:10.1111/nph.13565

    PubMed  Google Scholar 

  47. Rellstab C, Gugerli F, Eckert AJ, Hancock AM, Holderegger R (2015) A practical guide to environmental association analyses in landscape genomics. Accepted in Molecular Ecology. doi:10.1111/mec.13322

    Google Scholar 

  48. Scalfi M, Mosca E, Di Pierro EA, Troggio M et al (2014) Micro and macro-geographic scale effect on the molecular imprint of selection and adaptation in Norway spruce. Plos One 9(12):1–1

    Article  Google Scholar 

  49. Schoville SD, Bonin A, Francois O, Lobreaux S, Melodelima C, Manel S (2012) Adaptive genetic variation on the landscape: methods and cases. Annu Rev Ecol Evol Syst 43:23–43

    Article  Google Scholar 

  50. Seager R, Ting M, Held I, Kushnir Y, Lu J, Vecchi G et al (2007) Model projections of an imminent transition to a more arid climate in southwestern North America. Science 316:1181–1184

    Article  CAS  PubMed  Google Scholar 

  51. Sork VL, Aitken SN, Dyer RJ, Eckert AJ, Legendre P, Neale DB (2013) Putting the landscape into the genomics of trees: approaches for understanding local adaptation and population responses to changing climate. Tree Genetics and Genomes 9:901–911

    Article  Google Scholar 

  52. Stucki S, Orozco-terWengel P, Bruford MW, Colli L, Masembe C, Negrini R, Taberlet P, Joost S, and NEXTGEN Consortium (2014) High performance computation of landscape genomic models integrating local indices of spatial association. Available at http://arxiv.org/pdf/1405.7658v1.pdf

  53. de Villemereuil P, Frichot E, Bazin E, Francois O, Gaggiotti OE (2014) Genome scan methods against more complex models: when and how much we trust them? Mol Ecol 23:2006–2019

    Article  PubMed  Google Scholar 

  54. de Villemereuil P and Gaggiotti OE (in press). A new FST-based method to uncover local adaptation using environmental variables. Methods in Ecology and Evolution. Doi:10.1111/2041-210X.12418

Download references

Acknowledgments

The authors declare that they have no conflict of interest. The authors thank to Dr. Andrew J. Eckert for helpful discussion and detailed and constructive suggestions. Irina Ćalić was supported by DISPAA doctorate scholarship provided by University of Florence, Italy. A special thanks goes to John D. Liechty for a compressive help on scripting and computational work at UC Davis. Irina Ćalić give thanks to Markus Neteler (GIS Remote sensing group at Foundation of Edmund Mach, San Michele all’Adige, Italy) for providing environmental dataset and Lorenzo Bonosi for sharing of genomic data within project PicPhenomics on Norway spruce.

Author information

Affiliations

Authors

Corresponding author

Correspondence to David B. Neale.

Additional information

Communicated by S. C. González-Martínez

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 101 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ćalić, I., Bussotti, F., Martínez-García, P.J. et al. Recent landscape genomics studies in forest trees—what can we believe?. Tree Genetics & Genomes 12, 3 (2016). https://doi.org/10.1007/s11295-015-0960-0

Download citation

Keywords

  • Adaptation
  • Genotype to environment
  • Genomics
  • Picea abies