Tree Genetics & Genomes

, 11:115

A RAD-based linkage map of kiwifruit (Actinidia chinensis Pl.) as a tool to improve the genome assembly and to scan the genomic region of the gender determinant for the marker-assisted breeding

  • Davide Scaglione
  • Alice Fornasiero
  • Catalina Pinto
  • Federica Cattonaro
  • Alessandro Spadotto
  • Rodrigo Infante
  • Claudio Meneses
  • Rachele Messina
  • Orietta Lain
  • Guido Cipriani
  • Raffaele Testolin
Original Article
Part of the following topical collections:
  1. Genome Biology

Abstract

Kiwifruit breeding still largely relies on phenotypic observation of cross progeny grown in the field to fruiting maturity, without any selection prior to the juvenility being overcome. Developing markers for the selection of traits of interest would greatly help breeders to rapidly screen breeding populations. With the aim of mapping several traits of interest in kiwifruit, a F1 population of diploid (2n = 58) Actinidia chinensis was produced by combining parents with contrasting phenotypic traits. Ninety-four individuals were preliminarily analyzed to obtain a saturated genetic map based on 167 SSRs from the literature and 12,586 segregating restriction-site-associated DNA (RAD) loci obtained through an approach known as genotyping-by-sequencing (GBS) based on haplotype calling of SNP markers identified by a modified double digest restriction-associated DNA sequencing (ddRADseq) protocol as proposed by Peterson et al. (2012). To improve the accuracy of genotype calling, restriction-site-associated reads were aligned to the scaffolds of the recently published kiwifruit genome (Huang et al. 2013). This strategy provided genetic anchoring to 557 Mbp (90 %) of the assembly, helping also to anchor some 120 unmapped Mbp and to identify some mis-joined scaffolds. The analysis of the region controlling the dioecy in kiwifruit, spanning 16 scaffolds in the pseudomolecule 25 of the genome assembly (approximately 4.9 Mbp), with RAD markers that co-segregated with the gender determinant, allowed to sort out markers suitable for marker-assisted selection for the gender in the mapping population with successful extension to further controlled crosses having parents at different ploidy level and belonging to the A. chinensis/Actinidia deliciosa complex.

Keywords

Genotyping-by-sequencing Next-generation sequencing Single-nucleotide polymorphism Genetic map Marker-assisted selection 

Supplementary material

11295_2015_941_MOESM1_ESM.xlsx (10 kb)
ESM 1Adapter sequences used for the generation of the ddRAD library. (XLSX 9 kb)
11295_2015_941_MOESM2_ESM.xlsx (5.1 mb)
ESM 2Linkage maps with all markers information and scoring matrices. (XLSX 5176 kb)
11295_2015_941_MOESM3_ESM.pptx (456 kb)
ESM 3Figures of parental maps alignment for each linkage group. (PPTX 455 kb)

References

  1. Catchen J, Amores A, Hohenlohe P, Cresko W, Postlethwait J (2011) Stacks: building and genotyping loci de novo from short-read sequences. G3: Genes, Genomes, Genetics 1:171–182CrossRefGoogle Scholar
  2. Chakravarti A, Lasher LK, Reefer JE (1991) A maximum likelihood method for estimating genome length using genetic linkage data. Genetics 128:175–182PubMedCentralPubMedGoogle Scholar
  3. Cipriani G, Morgante M (1993) Evidence of chloroplast variation DNA variation in the genus Actinidia revealed by restriction analysis of PCR - amplified fragments. J Genet Breeding 47:319–326Google Scholar
  4. Crowhurst RN, Gleave AP, MacRae EA et al (2008) Analysis of expressed sequence tags from Actinidia: applications of a cross species EST database for gene discovery in the areas of flavor, health, color and ripening. BMC Genomics 9:351PubMedCentralCrossRefPubMedGoogle Scholar
  5. Fraser LG, Tsang GK, Datson PM, De Silva HN, Harvey CF, Gill GP, Crowhurst RN, McNeilage MA (2009) A gene-rich linkage map in the dioecious species Actinidia chinensis (kiwifruit) reveals putative X/Y sex-determining chromosomes. BMC Genomics 10:102. doi:10.1186/1471-2164-10-102 PubMedCentralCrossRefPubMedGoogle Scholar
  6. Hackett CA, Broadfoot LB (2003) Effects of genotyping errors, missing values and segregation distortion in molecular marker data on the construction of linkage maps. Heredity 90:33–38. doi:10.1038/sj.hdy.6800173 CrossRefPubMedGoogle Scholar
  7. Huang WG, Cipriani G, Morgante M, Testolin R (1998) Microsatellite DNA in Actinidia chinensis: isolation, characterisation, and homology in related species. Theor Appl Genet 97:1269–1278CrossRefGoogle Scholar
  8. Huang S-X, Ding J, Deng D et al (2013) Draft genome of the kiwifruit Actinidia chinensis. Nat Communications 4:2640. doi:10.1038/ncomms3640 Google Scholar
  9. Kumar S, Chagné D, Bink MCAM, Volz RK, Whitworth C, Carlisle C (2012) Genomic selection for fruit quality traits in apple (Malus x domestica Borkh.). PLoS ONE 7(5):e36674. doi:10.1371/ journal.pone.0036674 PubMedCentralCrossRefPubMedGoogle Scholar
  10. Langmead B, Salzberg S (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359PubMedCentralCrossRefPubMedGoogle Scholar
  11. McNeilage MA, Fraser LG, Tsang GK, Datson PM, De Silva HN, Crowhurst RN, Ferguson AR (2012) Molecular genetics and genomics and kiwifruit breeding. Acta Horticulturae 913:63–70Google Scholar
  12. Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829PubMedCentralPubMedGoogle Scholar
  13. Morgante M, Hanafey M, Powell W (2001) Microsatellites are preferentially associated with non repetitive DNA in plant genomes. Nat Genet 30:194–200CrossRefGoogle Scholar
  14. Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE (2012) Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS One 7(5), e37135. doi:10.1371/journal.pone.003 PubMedCentralCrossRefPubMedGoogle Scholar
  15. Ronin Y, Mester D, Minkov D, Belotserkovski R, Jackson BN, Schnable PS, Aluru S, Korol A (2012) Two-phase analysis in consensus genetic mapping. G3 Genes Genomes Genetics 2(5):537–549. doi:10.1534/g3.112.002428 PubMedCentralPubMedGoogle Scholar
  16. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Methods Mol Biol, vol 132. Humana Press, Totowa, pp 365–386Google Scholar
  17. Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: JoinMap. Plant J 3:739–744CrossRefGoogle Scholar
  18. Testolin R (2012) Breeding the future: what fruit breeders can learn from breeders of cows and chickens. Chronica Horticulturae 52(2):6–8Google Scholar
  19. Testolin R (2013) Kiwifruit breeding: from the phenotypic analysis of parents to the genomic estimation of their breeding value (GEBV). Acta Horticulturae 913:123–130Google Scholar
  20. Testolin R, Cipriani G, Costa G (1995) Sex segregation ratio and gender expression in the genus Actinidia. Sexual Plant Reprod 8:129–132CrossRefGoogle Scholar
  21. Van Ooijen JW (2006) JoinMap® 4, Software for the mapping of quantitative trait loci in experimental populations. Kyazma B.V, WageningenGoogle Scholar
  22. Van Os H, Stam P, Visser RGF, Eck HJ (2005) SMOOTH: a statistical method for successful removal of genotyping errors from high-density genetic linkage data. Theor Appl Genet 112:187–194CrossRefPubMedGoogle Scholar
  23. Wu Y, Bhat PR, Close TJ, Lonardi S (2008) Efficient and accurate construction of genetic linkage maps from the minimum spanning tree of a graph. Plos ONE. doi:10.1371/ journal.pgen.1000212 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Davide Scaglione
    • 1
  • Alice Fornasiero
    • 1
  • Catalina Pinto
    • 2
  • Federica Cattonaro
    • 1
  • Alessandro Spadotto
    • 1
  • Rodrigo Infante
    • 2
  • Claudio Meneses
    • 3
  • Rachele Messina
    • 4
  • Orietta Lain
    • 4
  • Guido Cipriani
    • 4
  • Raffaele Testolin
    • 4
  1. 1.IGA Technology Services, Parco Scientifico e TecnologicoUdineItaly
  2. 2.Departamento de Producción AgrícolaUniversity of ChileSantiagoChile
  3. 3.Centro de Biotecnología VegetalUniversidad Andrés BelloSantiagoChile
  4. 4.Dipartimento di Scienze agrarie e ambientaliUniversity of UdineUdineItaly

Personalised recommendations