Tree Genetics & Genomes

, 11:103 | Cite as

Influence of putative forest refugia and biogeographic barriers on the level and distribution of genetic variation in an African savannah tree, Khaya senegalensis (Desr.) A. Juss

  • Gary J. Sexton
  • C. H. Frere
  • A. Kalinganire
  • A. Uwamariya
  • A. J. Lowe
  • I. D. Godwin
  • P. J. Prentis
  • M. J. Dieters
Original Article
Part of the following topical collections:
  1. Population structure


Phylogeographic studies of tropical and subtropical tree species provide an ideal method to study the role of forest refugia in the structuring of genetic diversity in contemporary populations. To date, most studies have examined rainforest-dependent trees, yet the influence of forest refugia on savannah forest and woodland trees remains poorly understood despite their potentially important role in forest assemblages during the last glacial maximum. Here, we examine the level and structuring of genetic diversity across the geographic range of the savannah woodland tree, Khaya senegalensis—African mahogany, from Senegal to Uganda (>5000 km) and from the steppes of the Sahara desert to the fringes of Africa’s equatorial rainforests (700 km). Three chloroplast (cpDNA) loci and 13 nuclear microsatellite (nSSR) loci were genotyped in 503 individuals. Individual-based clustering of nSSR genotypes identified that all samples formed two populations that showed no pattern of geographic structuring. Population level analysis of nSSR data revealed only very weak genetic structure (F ST = 0.013) with most of the genetic diversity contained within populations. Geographical differentiation (G ST = 0.096) was low for the 14 haplotypes identified. However, whereas all haplotypes occurred in the western populations (including Cameroon), only two cosmopolitan haplotypes were found in central-eastern populations. Geographically restricted low-frequency haplotypes were found in eight western populations. Higher genetic diversity in western populations was confirmed by patterns of allelic richness, which were lower in central-eastern populations. Taken together, these results indicate that K. senegalensis displays very little genetic differentiation across its geographic range and that previously identified barriers to dispersal across the northern savannah belt of tropical Africa (e.g. the Dahomey Gap, Mega Lake Chad and the Adamawa Highlands) have not impeded contemporary gene dispersal in this species. Nevertheless, clustering of rare haplotypes indicates that the Dahomey Gap has likely been an important historical barrier to genetic connectivity between western and eastern regions of the species and that it is likely that this savannah tree also experienced range contraction around major forest refugial fringes or riparian incursions during the last glacial maximum (LGM).


cpDNA nSSRs Khaya senegalensis Tropical Africa Savannah Genetic diversity 



We would like to express our appreciation for the support given to this study by the following people and organizations: Behima Kone (ICRAF, Bamoko, Mali), Yaw Boakye Agyeman (Kwame Nkrumah University, Ghana), Kojo Wilson (Forest Research Institute of Ghana), Ntim Gyakari (Forestry Commission, Ghana), Gilles Chaix (CIRAD France), William Hawthorne (Plant Sciences, Oxford England), Roger Mills (Plant Sciences Library, Oxford), Tivvy Harvey (Royal Botanical Gardens Kew England) and Garth Nikles (DEEDI, Australia). We are also grateful to the forestry staff at the Queensland Department of Employment, Economic Development and Innovation (Geoff Dickinson) and the Northern Territory Department of Regional Development, Primary Industries, Fisheries and Resources (Don Reilly) for their permission and assistance in the collection of leaf samples from trial sites established in northeast Queensland and in the Northern Territory.

Conflict of interest

The authors declare that they have no competing interests.

Data Archiving Statement

Data used in this study are publically available in Supplementary File 5.

Supplementary material

11295_2015_933_MOESM1_ESM.docx (23 kb)
ESM 1 (DOCX 23 kb)
11295_2015_933_MOESM2_ESM.docx (23 kb)
ESM 2 (DOCX 22 kb)
11295_2015_933_MOESM3_ESM.docx (34 kb)
ESM 3 (DOCX 34 kb)
11295_2015_933_MOESM4_ESM.docx (24 kb)
ESM 4 (DOCX 23 kb)


  1. Ahmed S, Compton SG, Butlin RK, Gilmartin PM (2009) Wind-borne insects mediate directional pollen transfer between desert fig trees 160 kilometers apart. PNAS 106(48):20342–20347PubMedCentralCrossRefPubMedGoogle Scholar
  2. Allal F, Sanou H, Millet L, Vaillant A, Camus-Kulandaivelu L, Logossa ZA, Lefèvre F, Bouvet J-M (2011) Past climate changes explain the phylogeography of Vitellaria paradox over Africa. Heredity 107:174–186PubMedCentralCrossRefPubMedGoogle Scholar
  3. Als TD, Hansen MM, Maes GE, Castonguay M, Riemann L, Aarestrup K, Munk P, Sparholt H, Hanel R, Bernatchez L (2011) All roads lead to home: panmixia of European eel in the Sargasso Sea. Mol Ecol 20:1333–1346CrossRefPubMedGoogle Scholar
  4. Alvarez N, Thiel-Egenter C, Tribsch A, Holderegger R et al (2009) History or ecology? Substrate type as a major driver of spatial genetic structure in Alpine plants. Ecol Lett 12:632–640. doi: 10.1111/j.14610248.2009.01312.x CrossRefPubMedGoogle Scholar
  5. Anhuf D, Ledru MP, Behling H, Da Cruz FW, Cordeiro RC, Van der Hammen T, Karmann I, Marengo JA, De Oliveira PE, Pessenda L, Siffedine A, Albuquerque AL, Da Silva Dias PL (2006) Paleo-environmental change in the Amazonian and African rainforest during the LGM. Palaeogeogr Palaeoclimatol Palaeoecol 239:510–515CrossRefGoogle Scholar
  6. Ashley MV (2010) Plant parentage, pollination, and dispersal: how DNA microsatellites have altered the landscape. Crit Rev Plant Sci 29(3):148–161CrossRefGoogle Scholar
  7. Avise JC (1994) Molecular markers, natural history and evolution. Chapman and Hill, New YorkCrossRefGoogle Scholar
  8. Bacles CFE, Lowe AJ, Ennos RA (2006) Effective seed dispersal across a fragmented landscape. Science 311:268CrossRefGoogle Scholar
  9. Bandelt HJ, Forester P, Rohl A (1999) Median-joining networks for inferring phylogenies. Mol Biol Evol 16:37–48CrossRefPubMedGoogle Scholar
  10. Bekessy SA, Allnutt TR, Premoli AC, Lara A, Ennos RA, Burgman MA, Cortes M, Newton AC (2002) Genetic variation in the vulnerable and endemic Monkey Puzzle tree, detected using RAPDs. Heredity 88:243–249CrossRefPubMedGoogle Scholar
  11. Born C, Hardy OJ, Chevallier MH, Ossari S, Atteke C, Wickings EJ, Hossaert-Mckey M (2008) Small-scale spatial genetic structure in the central African rainforest tree species Aucoumea klaineana: a stepwise approach to infer the impact of limited gene dispersal, population history and habitat fragmentation. Mol Ecol 17:2041–2050CrossRefPubMedGoogle Scholar
  12. Born C, Alvarez N, McKey D, Ossari S, Wickings EJ, Hossaert-Mckey M, Chevallier MH (2011) Insights into the biogeographical history of the Lower Guinea Forest Domain: evidence for the role of refugia in the intraspecific differentiation of Aucoumea klaineana. Mol Ecol 20:131–142CrossRefPubMedGoogle Scholar
  13. Bryja J, Granjon L, Dobigny G, Patzenhauerova H, Konececy A, Duplantier JM, Gauthier P, Colyn M, Durnez L, Lalis A, Nicolas V (2010) Plio-Pleistocene history of West African Sudanian savanna and the phylogeography of the Praomys daltoni complex (Rodentia): the environment geography genetic interplay. Mol Ecol 19:4783–4799CrossRefPubMedGoogle Scholar
  14. Cavers S, Telford A, Arenal F, Valencia R, Navarro C, Buonamici A, Lowe AJ, Vendramin GG (2013) Cryptic species and phylogeography in Spanish Cedar, Cedrela odorata L., throughout the neotropics. J Biogeogr 40:732–746CrossRefGoogle Scholar
  15. Clark PU, Dyke AS, Shakun JD, Carlson AE, Clark J, Wohlfarth B, Mitrovica JX, Hostetler SW, McCabe AM (2009) The last glacial maximum. Science 325:710. doi: 10.1126/science.1172873 CrossRefPubMedGoogle Scholar
  16. Daïnou K, Bizoux J-P, Doucet J-L, Mahy G, Hardy OJ, Heuertz M (2010) Forest refugia revisited: SSRs and cpDNA sequences support historical isolation in a wide-spread African tree with high colonization capacity, Milicia excelsa (Moraceae). Mol Ecol 19:4462–4477CrossRefPubMedGoogle Scholar
  17. Dayanandan S, Dole J, Bawa K, Kesseli R (1999) Population structure delineated with microsatellite markers in fragmented populations of a tropical tree, Carapa guianensis (Meliaceae). Mol Ecol 8:1585–1592CrossRefPubMedGoogle Scholar
  18. Dearden P, Chettomart S, Emphandu D, Tanakanjana N (1996) National parks and hill tribes in northern Thailand: a case study of Doi Inthanon. Soc Nat Resour 9:125–141CrossRefGoogle Scholar
  19. Debout GDG, Doucet J-L, Hardy OJ (2010) Population history and gene dispersal inferred from spatial genetic structure of a Central Africa timber tree, Distemonanthus benthamianus (Caesalpinioideae). Heredity 106(1):88–99PubMedCentralCrossRefPubMedGoogle Scholar
  20. Dick CW (2010) Phylogeography and population structure of tropical trees. Trop Plant Biol 3:1–3CrossRefGoogle Scholar
  21. Diekmann OE, Serrão EA (2012) Range-edge genetic diversity: locally poor extant southern patches maintain a regionally diverse hotspot in the seagrass Zostera marina. Mol Ecol 21:1647–1657CrossRefPubMedGoogle Scholar
  22. Drees LR, Manu A, Wilding LP (1993) Characteristics of aeolian dusts in Niger, West Africa. Geoderma 59:213–233CrossRefGoogle Scholar
  23. Duminil J, Heuertz M, Doucet J-L, Bourland N, Cruaud C, Gavory F, Doumenge C, Navascués M, Hardy OJ (2010) cpDNA-based species identification and phylogeography: application to African tropical tree species. Mol Ecol 19:5469–5483CrossRefPubMedGoogle Scholar
  24. Dumolin-Lapegue S, Demesure B, Fineschi S, Le Corre V, Petit RJ (1997) Phylogeographic structure of white oaks throughout the European continent. Genetics 146:1475–1487PubMedCentralPubMedGoogle Scholar
  25. Dupont LM, Jahns S, Marret F, Ning S (2000) Vegetation change in equatorial West Africa: time-slices for the last 150 Ka. Palaeogeogr Palaeoclimatol Palaeoecol 155:95–122CrossRefGoogle Scholar
  26. Dupont LM, Donner B, Schneider R, Wefer G (2001) Mid-Pleistocene environmental change in tropical Africa began as early as 1.05 Ma. Geology 29:195–198CrossRefGoogle Scholar
  27. Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4(2):359–361. doi: 10.1007/s12686-011-9548-7 CrossRefGoogle Scholar
  28. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10(3):564–567CrossRefPubMedGoogle Scholar
  29. FAO (1986) Data book on endangered tree and shrub species and provenances. Forestry Paper 77. RomeGoogle Scholar
  30. Fontaine C, Lovett PN, Sanou H, Maley J, Bouvet JM (2004) Genetic diversity of the shea tree (Vitellaria paradoxa C.F. Gaertn), detected by RAPD and chloroplast microsatellite markers. Heredity 93:639–648CrossRefPubMedGoogle Scholar
  31. Gaoue OG, Ticktin T (2008) Impacts of bark and foliage harvest on Khaya senegalensis (Meliaceae) reproductive performance in Benin. J Appl Ecol 45:35–40Google Scholar
  32. Gillies ACM, Cornelius JP, Newton AC, Navarro C, Hernandez M, Wilson J (1997) Genetic variation in Costa Rican populations of the tropical timber species Cedrela odorata L, assessed using RAPDs. Mol Ecol 6:1133–1145CrossRefGoogle Scholar
  33. Hamilton MB (1999) Four primer pairs for the amplification of chloroplast intergenic regions with intraspecific variation. Mol Ecol 8:521–522PubMedGoogle Scholar
  34. Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: the rear edge matters. Ecol Lett 8:461–467. doi: 10.1111/j.1461-0248.2005.00739.x CrossRefPubMedGoogle Scholar
  35. Hamrick JL (2004) Response of forest trees to global environmental changes. For Ecol Manag 197:323–335CrossRefGoogle Scholar
  36. Hardy OJ, Bourobou DN, Budde K, Daïnou K, Dauby G, Duminil J, Ewédjé E-E, Heuertz M, Koffi GK, Lowe AJ, Micheneau C, Poncet V (2013) Comparative phylogeography of African rain forest trees: a review of genetic signatures of vegetation history in the Guineo-Congolian domain. Compt Rendus Geosci 345:284–296CrossRefGoogle Scholar
  37. He C, Breuning-Madsen H, Awadzi TW (2007) Mineralogy of dust deposited during the Harmattan season in Ghana. Dan J Geogr 107(1):9–15CrossRefGoogle Scholar
  38. Hewitt GM (2000) The genetic legacy of the Quaternary ice ages. Review article. Nature 405:907–913CrossRefPubMedGoogle Scholar
  39. Hewitt GM (2004) The structure of biodiversity-insights from molecular phylogeography. Front Zool 1:4PubMedCentralCrossRefPubMedGoogle Scholar
  40. Hooghiemstra H, Lézine A-M, Leroy SAG, Dupont L, Marret F (2006) Late quaternary palynology in marine sediments: a synthesis of the understanding of pollen distribution patterns in the NW African setting. Quat Int 148:29–44CrossRefGoogle Scholar
  41. IUCN (2015) The IUCN red list of threatened species. Version 2015.1. Downloaded on 17 June 2015
  42. Jenik J (1994) The Dahomey-Gap, an important issue in African phytogeography. Mem Soc Biogeogr 3:125–133Google Scholar
  43. Jøker D (2000) Vitellaria paradoxa Gaertn. f. Seed leaflet No. 50, Danida Forest Seed Centre, Humlebaek, DenmarkGoogle Scholar
  44. Jøker D, Gaméné S (2003) Khaya senegalensis Seed leaflet No. 66, Danida Forest Seed Centre, Humlebaek DenmarkGoogle Scholar
  45. Jones FA, Chen J, Weng G-J, Hubbell SP (2005) A genetic evaluation of seed dispersal in the neotropical tree Jacaranda copaia (Bignoniaceae). Am Nat 166(5):543–555CrossRefPubMedGoogle Scholar
  46. Kadu CAC, Schueler S, Konrad H et al (2011) Phylogeography of the Afromontane Prunus africana reveals a former migration corridor between East and West African highlands. Mol Ecol 20:165–178CrossRefPubMedGoogle Scholar
  47. Kalinowski ST (2005) HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189CrossRefGoogle Scholar
  48. Kalu AE (1977) The Africa dust plume: its characteristic and propagation across West Africa in winter. In: Morales (ed) Sahara dust. Wiley, New York, pp 95–118Google Scholar
  49. Karan M, Evans DS, Reilly D, Schulte K, Wright C, Innes D, Holton TA, Nikles DG, Dickinson GR (2011) Rapid microsatellite marker development for African mahogany (Khaya senegalensis, Meliaceae) using next-generation sequencing and assessment of its intra-specific genetic diversity. Mol Ecol Resour. doi: 10.1111/j.1755-0998.2011.03080.x PubMedGoogle Scholar
  50. Kebede M, Ehrich D, Taberlet P, Nemomissa S, Brochmann C (2007) Phylogeography and conservation genetics of a giant lobelia (Lobelia giberroa) in Ethiopian and Tropical East African mountains. Mol Ecol 16:1233–1243CrossRefPubMedGoogle Scholar
  51. Kennedy JD (1936) Forest flora of Southern Nigeria. Government Printer, LagoGoogle Scholar
  52. Koren I, Kaufman YJ (2004) Direct wind measurements of Saharan dust events from Terra and Aqua satellites. Geophys Res Lett 31:L06122. doi: 10.1029/ 2003GL019338 Google Scholar
  53. Lézine A-M, Vergnaud-Grazzini C (1993) Evidence of forest extension in West Africa since 22,000 BP: a pollen record from the Eastern Tropical Atlantic. Quat Sci Rev 12:203–210CrossRefGoogle Scholar
  54. Lowe AJ, Gillies ACM, Wilson J, Dawson IK (2000) Conservation genetics of bush mango from central/west Africa: implications from random amplified polymorphic DNA analysis. Mol Ecol 9:831–841CrossRefPubMedGoogle Scholar
  55. Lowe AJ, Jourde B, Breyne P, Colpaert N, Navarro C, Cavers S (2003) Fine scale genetic structure and gene flow within Costa Rican populations of Mahogany (Swietenia macrophylla). Heredity 90:268–275CrossRefPubMedGoogle Scholar
  56. Lowe AJ, Harris D, Dormontt EE, Dawson IK (2010) Testing putative African tropical forest refugia using chloroplast and nuclear DNA phylogeography. Trop Plant Biol 3:50–58CrossRefGoogle Scholar
  57. Maley J (1987) Fragmentation de la forêt dense humide africaine et extension des biotopes montagnards au Quaternaire récent: nouvelles données polliniques etchronologiques. Implications paléoclimatiques et biogéographiques. Palaeoecol Afr 18:307–334Google Scholar
  58. Maley J (1991) The African rain forest vegetation and palaeoenvironments during late quaternary. Climate Change 19:79–98CrossRefGoogle Scholar
  59. Maley J (1996) The African rain forest: main characteristics of changes in vegetation and climate from the upper Cretaceous to the quaternary. Proc Roy Soc Edinb 104:31–73Google Scholar
  60. Martin C (1991) The rainforests of West Africa. Birkhauser, BaselCrossRefGoogle Scholar
  61. Morris-Pocock JA, Taylor SA, Birt TP, Damus M, Piatt JF, Warheit KI, Friesen VL (2008) Population genetic structure in Atlantic and Pacific Ocean common murres (Uria aalge): natural replicate tests of post-Pleistocene evolution. Mol Ecol 17:4859–4873CrossRefPubMedGoogle Scholar
  62. Muellner AN, Pennington TD, Koecke AV, Renner SS (2010) Biogeography of Cedrela (Meliaceae, Sapindales) in Central and South America. Am J Bot 97(3):511–518CrossRefPubMedGoogle Scholar
  63. Muller F, Voccia M, Ba A, Bouvet JM (2009) Genetic diversity and gene flow in a Caribbean tree Pterocarpus officinalis Jacq.: a study based on chloroplast and nuclear microsatellites. Genetica 135:185–198CrossRefPubMedGoogle Scholar
  64. Nathan R (2006) Perspective long-distance dispersal of plants. Science 313(5788):786–788CrossRefPubMedGoogle Scholar
  65. Neethling M, Matthee CA, Bowie RCK, von der Heyden S (2008) Evidence for panmixia despite barriers to gene flow in the southern African endemic, Caffrogobius caffer (Teleostei: Gobiidae). BMC Evol Biol 8:325. doi: 10.1186/1471-2148-8-325 PubMedCentralCrossRefPubMedGoogle Scholar
  66. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  67. Nichol JE (1999) Geomorphological evidence and Pleistocene refugia in Africa. Geogr J 165(1):79–89CrossRefGoogle Scholar
  68. Nielsen EE, Hemmer-Hansen J, Larsen PF, Bekkevold D (2009) Population genomics of marine fishes: identifying adaptive variation in space and time. Mol Ecol 18(15):3128–3150CrossRefPubMedGoogle Scholar
  69. Nikiema A, Pasternak D (2008) Khaya senegalensis (Desr.) A. Juss. Record from protabase. In: Louppe D, Oteng-Amoako AA, Brink M (eds) PROTA (Plant Resources of Tropical Africa / Ressources végétales de l’Afrique tropicale), Wageningen, Netherlands.
  70. Nikles DG (2006) The domestication of African mahogany (Khaya senegalensis) in northern Australia. Aust For 69(1):68–69CrossRefGoogle Scholar
  71. Novick RR, Dick CW, Lemes MR, Navarro C, Caccone A, Bermingham (2003) Genetic structure of Mesoamerican populations of Big-leaf mahogany (Swietenia macrophylla) inferred from microsatellite analysis. Mol Ecol 12:2885–2893CrossRefPubMedGoogle Scholar
  72. Odee DW, Telford A, Wilson J, Gaye A, Cavers S (2012) Plio-Pleistocene history and phylogeography of Acacia senegal in dry woodlands and savannahs of sub-Saharan tropical Africa: evidence of early colonisation and recent range expansion. Heredity 109(6):372–382PubMedCentralCrossRefPubMedGoogle Scholar
  73. Opgenoorth L, Vendramin GG, Mao K, Miehe G, Miehe S, Liepelt S, Liu J, Ziegenhagen B (2010) Tree endurance on the Tibetan Plateau marks the world’s highest known tree line of the Last Glacial Maximum. New Phytol 185:332–342CrossRefPubMedGoogle Scholar
  74. Orwa C, Mutua A, Kindt R, Jamnadass R, Anthony S (2009) Agroforestree database: a tree reference and selection guide version 4.0.
  75. Ottewell K, Grey E, Castillo F, Karubian J (2012) The pollen dispersal kernel and mating system of an insect-pollinated tropical palm, Oenocarpus bataua. Heredity 109(6):332–339PubMedCentralCrossRefPubMedGoogle Scholar
  76. Parmentier I, Malhi Y, Senterre B, Whittaker RJ, Alonso A, Balinga MPB, Bakayoko A, Bongers F, Chatelain C, Comiskey JA, Cortay R, Djuikouo Kamdem M-N, Doucet J-L, Gautier L, Hawthorne WD et al (2007) The odd man out? Might climate explain the lower tree α-diversity of African rain forests relative to Amazonian rain forests? J Ecol 95:1058–1071CrossRefGoogle Scholar
  77. Pavlacky DC, Goldizen AW, Prentis PJ, Nicholls JA, Lowe AJ (2009) A landscape genetics approach for quantifying the relative influence of historic and contemporary habitat heterogeneity on the genetic connectivity of a rainforest bird. Mol Ecol 18(14):2945–2960CrossRefPubMedGoogle Scholar
  78. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 18(14):2945–2960Google Scholar
  79. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research an update. Bioinformatics 28:2537–2539PubMedCentralCrossRefPubMedGoogle Scholar
  80. Peakall R, Ruibal M, Lindenmayer D (2003) Spatial autocorrelation analysis offers new insights into gene flow in the Australian bush rat, Rattus fuscipes. Evolution 57(5):1182–1195CrossRefPubMedGoogle Scholar
  81. Petit RJ, Brewer S, Bordacs S, Burg K, Cheddadi R, Coart E, Cottrell J, Csaikl U, Fineschi S, Goicoechea P, Jensen JS, König A, Lowe AJ, Madsen SF, Matyas G, Oledska I, Popescu F, Slade D, Van Dam B, de Beaulieu J-L, Kremer A (2002) Identification of refugia and post-glacial colonisation routes of European white oaks based on chloroplast DNA and fossil pollen evidence. For Ecol Manag 156:49–74CrossRefGoogle Scholar
  82. Petit RJ, Aguinagalde I, de Beaulieu J-L, Bittkau C, Brewer S, Cheddadi R, Ennos R, Fineschi S, Grivet D, Lascoux M, Mohanty A, Müller-Starck G, Demesure-Musch B, Palmé A, Martín JP, Rendell S, Vendramin GG (2003) Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300(5625):1563–1565CrossRefPubMedGoogle Scholar
  83. Pons O, Petit RJ (1995) Estimation, variance and optimal sampling of gene diversity I. Haploid locus. Theor Appl Genet 90:462–470CrossRefPubMedGoogle Scholar
  84. Pons O, Petit RJ (1996) Measuring and testing genetic differentiation with ordered versus unordered alleles. Genetics 144:1237–1245PubMedCentralPubMedGoogle Scholar
  85. Prentis PJ, Vesey A, Meyers NM, Mather PB (2004) Genetic structuring of the stream lily Helmholtzia glaberrima (Philydraceae) within Toolona Creek, south-eastern Queensland. Aust J Bot 52(2):201–207CrossRefGoogle Scholar
  86. Prentis PJ, Sigg D, Raghu S, Dhileephan K, Pavasovic A, Lowe AJ (2009) Understanding invasion history: genetic structure and diversity of two globally invasive plants and implications for their management. Divers Distrib 15:822–830CrossRefGoogle Scholar
  87. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedCentralPubMedGoogle Scholar
  88. Richards PW (1973) Africa, the ‘odd man out’. In: Meggers BJ, Ayensu ES, Duckworth WD (eds) Tropical forest ecosystems of Africa and South America: a comparative review. Smithsonian Institution Press, Washington, DC, pp 21–26Google Scholar
  89. Rodríguez-Banderas A, Vargas-Mendoza CF, Buonamici A, Vendramin GG (2009) Genetic diversity and phylogeographic analysis of Pinus leiophylla: a post-glacial range expanansion. J Biogeogr 36:1807–1820CrossRefGoogle Scholar
  90. Rousset F (2008) Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Mol Ecol Resour 8:103–106CrossRefPubMedGoogle Scholar
  91. Ruiz GJC, Schnabel A, Ennos R, Preuss S, Otero-Arnaiz A, Stone G (2010) Landscape genetics of the key African acacia species Senegalia mellifera (Vahl)–the importance of the Kenyan Rift Valley. Mol Ecol 19:5126–5139CrossRefGoogle Scholar
  92. Sacande M, Rønne C, Sanon M, Jøker D (2006) Adansonia digitata L. Seed leaflet No. 109, Danida Forest Seed Centre, Humlebaek, DenmarkGoogle Scholar
  93. Savill PS, Fox JED (1967) Trees of Sierra Leone. Forest Department, Freetown, 316 ppGoogle Scholar
  94. Schneider S, Roesseli D, Excoffier L (2000) Arlequin ver. 2.000: a software for population genetics data analysis. Genetics and Biometry Laboratory, University of Geneva, SwitzerlandGoogle Scholar
  95. Sexton GJ, Frere CH, Dieters M, Godwin ID, Prentis PJ (2010) Development and characterization of microsatellite loci for Khaya senegalensis (Meliaceae). Am J Bot 97:111–113CrossRefGoogle Scholar
  96. Shaw J, Lickey EB, Shilling EE, Small RL (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Am J Bot 94:275–288CrossRefPubMedGoogle Scholar
  97. Shimono A, Ueno S, Gu S, Zhao X, Tsumura Y, Tang Y (2010) Range shifts of Potentilla fruticosa on the Qinghai-Tibetan Plateau during glacial and interglacial periods revealed by chloroplast DNA sequence variation. Heredity 104:534–542CrossRefPubMedGoogle Scholar
  98. Sinsin B, Eyog-Matig O, Sinadouwirou TLA, Assogbadjo A (2002) Caraterisation ecologique des essences fourrageres Khaya senegalensis (Desr.) et Afzelia africana Sm. Suivantles gradients de latitude et de station au Benin. In: Eyog-Matigo O, Gaue OG, Obel-Lawson E (eds) Development of appropriate conservation strategies for African forest trees identified as priority species by SAFORGEN member countries. IGRI, Nairobi, pp 15–50Google Scholar
  99. Slatkin M (1993) Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47:264–279CrossRefGoogle Scholar
  100. Smith J (1949) Distribution of tree species in the Sudan in relation to rainfall and soil texture. Bulletin 4. Ministry of Agriculture. Khartoum, the Sudan: Republic of SudanGoogle Scholar
  101. Styles BT, Vosa CG (1971) Chromosome numbers in Meliaceae. Taxon 20(4):485–499CrossRefGoogle Scholar
  102. Styles BT, White F (1991) Flora of tropical East Africa. In: Polhill RM (ed) Meliaceae. Royal Botanic Gardens 1 Kew, BalkemaGoogle Scholar
  103. Synott TJ (1985) A checklist of the flora of Budongo Forest Reserve, Uganda, with notes on ecology and phenology. Occasional Papers 27, Commonwealth Forestry Institute, Oxford, UKGoogle Scholar
  104. Taberlet P, Cheddadi R (2002) Quaternary refugia and persistence of biodiversity. Science 297:2009–2010CrossRefPubMedGoogle Scholar
  105. Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109CrossRefPubMedGoogle Scholar
  106. Tomizawa Y, Takayama K, Sungkaew S, Saleh MNB, Asakawa T, Adjie B, Ardli ER, Soe MKK, Shan WK, Tung NX, Malekal NB, Onrizal, Yllano OB, Meenakshisundaram SH, Salmo III SG, Watano Y, Baba S, Tateishi Y, Kajita T (2012) Phylogeography of Xylocarpus granatum. In: Dahdouh-Guebas F, Satyanarayana B (eds) Proceedings of the International Conference: meeting on Mangrove ecology, functioning and management (MMM3). Galle, Sri LankaGoogle Scholar
  107. Tsy JL, Lumaret R, Mayne D, Mohamed VA, Abutaba YIM, Sagna M, Raoseta S, Danthu P (2009) Chloroplast DNA phylogeography suggest a West African centre of origin for the baobab, Adansonia digitata L (Bombacoideae, Malvaceae). Mol Ecol 18:1707–1715CrossRefGoogle Scholar
  108. van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  109. White G, Boshier DH, Powell W (1999) Genetic variation within a fragmented population of Swietenia humilis Zucc. Mol Ecol 8:1899–1909CrossRefPubMedGoogle Scholar
  110. White GM, Boshier DH, Powell W (2002) Increased pollen flow counteracts fragmentation in a tropical dry forest: an example from Swietenia humilis Zuccarini. Proc Natl Acad Sci USA 99:2038–2042PubMedCentralCrossRefPubMedGoogle Scholar
  111. Wickens GE, Lowe P (2008) The Baobabs: pachycauls of Africa, Madagascar and Australia. Springer, Dordrecht, 498 pCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Gary J. Sexton
    • 1
  • C. H. Frere
    • 2
  • A. Kalinganire
    • 3
  • A. Uwamariya
    • 4
  • A. J. Lowe
    • 5
  • I. D. Godwin
    • 1
  • P. J. Prentis
    • 6
  • M. J. Dieters
    • 1
  1. 1.School of Agriculture and Food SciencesUniversity of QueenslandBrisbaneAustralia
  2. 2.GeneCology Research Centre and Animal Health Innovation, Faculty of Science, Health, Education and EngineeringUniversity of the Sunshine CoastSunshine CoastAustralia
  3. 3.World Agroforestry Centre (ICRAF), ICRAF-WCA/SahelBamakoMali
  4. 4.Les Amis de la NatureBamakoMali
  5. 5.School of Earth and Environmental Sciences, The Environment InstituteUniversity of AdelaideAdelaideAustralia
  6. 6.School of Earth, Environmental and Biological SciencesQueensland University of TechnologyBrisbaneAustralia

Personalised recommendations