Skip to main content

Population genetics of the naturally rare tree Dimorphandra wilsonii (Caesalpinioideae) of the Brazilian Cerrado

Abstract

Naturally rare species have a higher probability of stochastic extinction due to genetic, demographic, or environmental hazards; human disturbance may intensify these threats. Rare species may therefore be in need of short-term intervention to survive. The ecosystem with the second highest biodiversity in Brazil, the Cerrado, is suffering from fragmentation and threats to its flora. Dimorphandra wilsonii, a 30-m tall endemic tree of the Brazilian Cerrado, is listed as critically endangered; only 21 adult trees have been identified. We carried out mating system and pollen flow analyses to understand the current gene flow and limitations in the reproduction of D. wilsonii. With seven fluorescently labelled microsatellite primers, we genotyped 20 adult trees and 269 progeny from 13 mother trees. D. wilsonii displayed low levels of genetic diversity; bottleneck events are likely to have occurred (H e  = 0.60 and 0.29; H o  = 0.71 and 0.33, for adults and progeny, respectively). This species is predominantly outcrossing (t m  = 0.88), with some selfing (1-t m  = 0.12), as well as crossing between related individuals (t m -t s  = 0.11). None of the studied trees was reproductively isolated; a high proportion of pollen (55 %) came from trees yet to be discovered. Two genetic clusters (Northern and Southern) were identified, with high values of genetic divergence among the Southern sites. Planting of seedlings and monitoring of seed dispersion in order to maintain the genetic diversity and genetic structure of D. wilsonii are strategies that may ensure the continuation of D. wilsonii, but this species does not seem to require reproductive intervention to remain viable.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Aguilar R, Quesada M, Ashworth L, Herrerias-Diego Y, Lobo J (2008) Genetic consequences of habitat fragmentation in plant populations: susceptible signals in plant traits and methodological approaches. Mol Ecol 17:5177–5188. doi:10.1111/j.1365-294X.2008.03971.x

    PubMed  Article  Google Scholar 

  • Barrett SCH, Kohn JR (1991) Genetic and evolutionary consequences of small population size in plants: implications for conservation. In: Falk DD, Holsinger KE (eds) Genetics and conservation of rare plants. Oxford University Press, New York, pp 3–30

    Google Scholar 

  • Bizerril MXA, Rodrigues FHG, Hass A (2005) Fruit consumption and seed dispersal of Dimorphandra mollis Benth. (Leguminosae) by the lowland tapir in the Cerrado of Central Brazil. Braz J Biol 65:407–413. doi:10.1590/S1519-69842005000300005

    CAS  PubMed  Article  Google Scholar 

  • Carneiro FS, Lacerda AEB, Leme MR, Gribel R, Kanashiro M, Wadt LHO, Sebbenn AM (2011) Effects of selective logging on the mating system and pollen dispersal of Hymenaea courbaril L. (leguminosae) in the Eastern Amazon as revealed by microsatellite analysis. For Ecol Manage 262:1758–1765

    Article  Google Scholar 

  • Cole CT (2003) Genetic variation in rare and common plants. Annu Rev Ecol Syst Evol 34:213–237. doi:10.1146/annurev.ecolsys.34.030102.151717

    Article  Google Scholar 

  • Earl DA, VonHoldt BM (2011) STRUCTURE HARVESTER; A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361. doi:10.1007/s12686-011-9548-7

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. doi:10.1111/j.1365-294X.2005.02553.x

    CAS  PubMed  Article  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genet 164:1567–1587

    CAS  Google Scholar 

  • Fernandes FM, Fonseca AG, Kaechele K, Goulart MF, Marinho W, Souza HAV, Queiroz AR, Giorni VT, Oliveira G, Rodrigues MJ, Bacelar M, Lovato MB (2007) Tentando evitar mais uma extinção: o caso do “Faveiro de Wilson” (Dimorphandra wilsonii Rizzini). In:Pereira TS, Costa MLMN, Jackson PW (Eds.) Recuperando o verde para as cidades: a experiência dos jardins botânicos brasileiros. Rede Brasileira de Jardins Botânicos, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro. pp 87–98

  • Finger A, Kettle CJ, Kaiser-Bunbury CN, Valentin T, Doudee D, Matatiken D, Ghazoul J (2011) Back from the brink: potential for genetic rescue in a critically endangered tree. Mol Ecol 20:3773–3784. doi:10.1111/j.1365-294X.2011.05228.x

    CAS  PubMed  Article  Google Scholar 

  • Goodwillie C, Kalisz S, Eckert CG (2005) The evolutionary enigma of mixed mating systems in plants: occurrence, theoretical explanations, and empirical evidence. Annu Rev Ecol Evol Syst 36:47–79

    Article  Google Scholar 

  • Goudet J (1995) FSTAT (Version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486

    Google Scholar 

  • Hedrick PW (2005) A standardized genetic differentiation measure. Evolution 59:1633–1638

    CAS  PubMed  Article  Google Scholar 

  • Hensen I, Oberprieler C (2005) Effects of population size on genetic diversity and seed production in the rare Dictamnus albus (Rutaceae) in central Germany. Conserv Genet 6:63–73. doi:10.1007/s10592-004-7745-6

    Article  Google Scholar 

  • Hmeljevski K, Reis A, Montagna T, Reis MC (2011) Genetic diversity, genetic drift and mixed mating system in small subpopulations of Dyckia ibiramensis, a rare endemic bromeliad from Southern Brazil. Conserv Genet 12:761–769. doi:10.1007/s10592-011-0183-3

    Article  Google Scholar 

  • Honnay O, Jacquemyn H (2007) Susceptibility of common and rare plant species to the genetic consequences of habitat fragmentation. Conserv Biol 21:823–831. doi:10.1111/j.1523-1739.2006.00646.x

    PubMed  Article  Google Scholar 

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106. doi:10.1111/j.1365-294X.2007.03089.x

    PubMed  Article  Google Scholar 

  • Karron JD (1991) Patterns of genetic variation and breeding systems in rare plant species. In: Falk DD, Holsinger KE (eds) Genetics and conservation of rare plants. Oxford University Press, New York, pp 87–98

    Google Scholar 

  • Leimu R, Mutikainen P, Koricheva J, Fischer M (2006) How general are positive relationships between plant population size, fitness and genetic variation? J Ecol 94:942–952. doi:10.1111/j.1365-2745.2006.01150.x

    Article  Google Scholar 

  • Lewis, PO, Zaykin D (2001) GDA – Genetic Data Analysis: Computer program for the analysis of allelic data. Version 1.0 (d16c). Free program distributed by the authors over the internet from http://lewis.eeb.uconn.edu/lewishome/software.html

  • Marshall TC, Slate J, Kruuk LEB et al (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655. doi:10.1046/j.1365-294x.1998.00374.x

    CAS  PubMed  Article  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858. doi:10.1038/35002501

    CAS  PubMed  Article  Google Scholar 

  • Oosterhout CV, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Not 4:535–538. doi:10.1111/j.1471-8286.2004.00684.x

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genet 155:945–959

    CAS  Google Scholar 

  • Riahi M, Zarre S, Maassoumi AA, Attar F, Kazempour Osaloo S (2010) An inexpensive and rapid method for extracting papilionoid genomic DNA. Genet Mol Res 9:1334–1342. doi:10.4238/vol9-3gmr839

    CAS  PubMed  Article  Google Scholar 

  • Ritland K (1989) Correlated matings in the partial selfer Mimulus guttatus. Evolution 43:848–859. doi:10.2307/2409312

    Article  Google Scholar 

  • Ritland K (2002) Extensions of models for the estimation of mating systems using n independent loci. Heredity 88:221–228. doi:10.1038/sj.hdy.6800029

    PubMed  Article  Google Scholar 

  • Ritland K, Jain S (1981) A model for the estimation of outcrossing rate and gene-frequencies using n independent loci. Heredity 47:35–52. doi:10.1038/hdy.1981.57

    Article  Google Scholar 

  • Rizzini CT (1969) Espécies novas de árvores do Planalto Central Brasileiro. An Acad Bras de Ciênc 41:239–244

    Google Scholar 

  • Schaberg PG, DeHayes DH, Hawley GJ, Nijensohn SE (2008) Anthropogenic alterations of genetic diversity within tree populations: Implications for forest ecosystem resilience. Fores Ecol and Manag 256:855–862. doi:10.1016/j.foreco.2008.06.038

    Article  Google Scholar 

  • Silva MF (1986) Flora Neotrópica: Dimorphandra (Caesalpiniaceae). The New York Botanical Garden Press, New York 44:1–128

  • Simberloff D (1988) The contribution of population and community biology to conservation science. Annu Rev Ecol Syst 19:473–511. doi:10.1146/annurev.es.19.110188.002353

    Article  Google Scholar 

  • Viana e Souza HA, Lovato MB (2010) Genetic diversity and structure of the critically endangered tree Dimorphandra wilsonii and of the widespread in the Brazilian Cerrado Dimorphandra mollis: implications for conservation. Biochem Syst Ecol 38:49–56. doi:10.1016/j.bse.2009.12.038

    CAS  Article  Google Scholar 

  • Vinson CC, Azevedo VCR, Mendonça MAC, Ciampi AY, Oliveira LO (2013) Microsatellite markers for the rare tree Dimorphandra wilsonii (Caesalpinioideae, Fabaceae) and transferability to Dimorphandra species. Mol Ecol Resour 13(2):341–343. doi:10.1111/1755-0998.12061

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

The authors thank all owners of the visited sites, and Mr. Joseph Hein (Fazenda Cauaia) and Cimentos Liz, for allowing the collection of material; in addition, IBAMA granted a special licence for sampling D. wilsonii (Licence No. 24385-1). We also thank Eveline Caixeta and other members of the Laboratório de Biotecnologia do Cafeeiro for the use of the DNA Analyser, and members of our laboratory for support. CCV received a post-doc fellowship from Fundação de Amparo à Pesquisa do estado de Minas Gerais (BPD-00037-10) and a grant from the International Foundation for Science (D/5064-1). TCSS received a grant from CNPq (507951/2010-7). LOO received a fellowship from Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (PQ 304153/2012-5) and a grant from Fundação de Amparo à Pesquisa do estado de Minas Gerais (PPM-00291-13).

Conflict of interest

The authors declare that they have no commercial or financial relationships that could be construed as a potential conflict of interest.

Data archiving statement

Data has been submitted to Dryad (https://datadryad.org/) as three files: (1) ID of samples, X and Y coordinates, (2) microsatellite genotypes of all adult trees and (3) microsatellite genotypes of all progeny.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz O. de Oliveira.

Additional information

Communicated by D. Grattapaglia

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vinson, C.C., Dal’Sasso, T.C.S., Sudré, C.P. et al. Population genetics of the naturally rare tree Dimorphandra wilsonii (Caesalpinioideae) of the Brazilian Cerrado. Tree Genetics & Genomes 11, 46 (2015). https://doi.org/10.1007/s11295-015-0876-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-015-0876-8

Keywords

  • Cerrado
  • Conservation
  • Dimorphandra
  • Mating system
  • Microsatellite
  • Rare species