Skip to main content
Log in

The impact of SNP fingerprinting and parentage analysis on the effectiveness of variety recommendations in cacao

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Evidence for the impact of mislabeling and/or pollen contamination on consistency of field performance has been lacking to reinforce the need for strict adherence to quality control protocols in cacao seed garden and germplasm plot management. The present study used SNP fingerprinting at 64 loci to examine the diversity, labeling errors and parentage in 2551 trees obtained from six seed gardens, breeders clone collection and single-cross progenies and a sample of farmers’ trees in Ghana. Clone mislabeling was pervasive, both within the seed garden clones and among clones of the breeders’ active collection. Among the seed garden clones, mislabeled trees were assigned to other parental clones used in the seed garden, pointing to labeling errors prior to planting as the principal cause of mislabeling. Among the breeders’ clone collection, both homonymous and synonymous mislabeling were identified in addition to trees with unique genotypes. This implicates pre-planting labeling errors and rootstocks overtaking budded scions. Parentage analysis supported the Amelonado ancestry of farmers’ varieties but with significant contribution of Upper Amazon introductions. Parentage of recently developed clones and of progenies of controlled crosses showed evidence of both pollen contamination and effects of mislabeled parents. The observed patterns of unexpected parentage had direct effects on the consistency of the variety performance between trials and increased within-plot variability for families with mixed ancestry. The results provide a strong basis for mainstreaming SNP fingerprinting in cacao breeding programs to improve the efficiency of the variety development process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams WT, Neale DB, Loopstra CA (1988) Verifying controlled crosses in conifer tree-improvement programs. Silvae Genet 37:147–152

    Google Scholar 

  • Adomako B (2006) Combining ability analysis of blackpod disease incidence in cacao genotypes in Ghana. Trop Sci 46:201–204

    Article  Google Scholar 

  • Adomako B, Allen RC, Adu-Ampomah Y (1999a) Evaluation of hybrids among Upper Amazon cacao selections in Ghana. Plant Rech Dev 6:455–462

    Google Scholar 

  • Adomako B, Allen RC, Adu-Ampomah Y (1999b) Combining abilities for yield and vegetative traits of Upper Amazon cacao selections in Ghana. Plant Rech Dev 6:183–189

    Google Scholar 

  • Abdul-Karimu A, Adomako B, Adu- Ampomah Y (2006) Cacao introduction into Ghana. Ghana J Agric Sci 39:227–238

    Google Scholar 

  • Allegre M, Argout X, Boccara M, Fouet O, Roguet Y, Bérard A, Thévenin JM, Chauveau A, Rivallan R, Clement D, Courtois B, Gramacho K, Boland-Augé A, Tahi M, Umaharan P, Brunel D, Lanaud C (2012) Discovery and mapping of a new expressed sequence tag-single nucleotide polymorphism and simple sequence repeat panel for large-scale genetic studies and breeding of Theobroma cacao L. DNA Res. doi:10.1093/dnares/dsr039

    PubMed Central  PubMed  Google Scholar 

  • Alleweldt G, Possingham JV (1988) Progress in grapevine breeding. Theor Appl Genet 75:669–673

    Article  Google Scholar 

  • Argout X, Fouet O, Wincker P, Gramacho K, Legavre T, Sabau X, Risterucci AM, Da Silva C, Cascardo J, Allegre M, Kuhn D, Verica J, Courtois B, Loor G, Babin R, Sounigo O, Ducamp M, Guiltinan MJ, Ruiz M, Alemanno L, Machado R, Phillips W, Schnell R, Gilmour M, Rosenquist E, Butler D, Maximova S, Lanaud C (2008) Towards the understanding of cacao transcriptome: production and analyses of an exhaustive datasets of ESTs of Theobroma cacao generated from various tissues and under various conditions. BMC Genomics 9:512

    Article  PubMed Central  PubMed  Google Scholar 

  • Ashley MV (2010) Plant parentage, pollination, and dispersal: how DNA microsatellites have altered the landscape. Crit Rev Plant Sci 29:148–161

    Article  CAS  Google Scholar 

  • Cervantes-Martinez C, Brown JS, Schnell RJ, Phillips-Mora W, Takrama JF, Motamayor JC (2006) Combining ability for disease resistance, yield, and horticultural traits of cacao (Theobroma cacao L.) clones. J Am Soc Hort Sci 131:231–241

    Google Scholar 

  • Collard BC, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans Royal Soc London Ser B 363:557–572

    Article  CAS  Google Scholar 

  • Corley RHV (2005) Illegitimacy in oil palm breeding—a review. J Oil Palm Res 17:64–69

    Google Scholar 

  • CRIG (2012) Annual report. Cacao Research Institute of Ghana 2010/2011. CRIG Akim Tafo, Ghana Cacao Board, 196 p

  • Dadzie AM, Livingstone DS III, Opoku SY, Takrama J, Padi FK, Offei SK, Danquah EY, Motamayor JC, Schnell RJ, Kuhn DN (2013) Conversion of microsatellite markers to single nucleotide polymorphism (SNP) markers for genetic fingerprinting of Theobroma cacao L. J Crop Improv 27:215–241

    Article  CAS  Google Scholar 

  • Dent AE, Bridgett MV (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Doyle J, Doyle J (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Efombagn I, Motamayor J, Sounigo O, Eskes A, Nyasse’ S, Cilas C, Schnell R, Manzanares-Dauleux M, Kolesnikova-Allen M (2008) Genetic diversity and structure of farm and GenBank accessions of cacao (Theobroma cacao L.) in Cameroon revealed by microsatellite markers. Tree Genet Genom 4:821–831

    Article  Google Scholar 

  • Ericsson T (1999) The effect of pedigree error by misidentification of individual trees on genetic evaluation of a full-sib experiment. Silvae Genet 48:239–242

    Google Scholar 

  • Eskes AB (2011) Collaborative and participatory approaches to cocoa variety improvement. Final report of the CFC/ICCO/Bioversity project on cocoa productivity and quality improvement: a participatory approach (2004–2010). CFC, Amsterdam, The Netherlands/ICCO, London, UK/Bioversity International, Rome, Italy, 205 pp

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Evett IW, Weir BS (1998) Interpreting DNA evidence: statistical genetics for forensic scientists. Sinauer, Sunderland

    Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Longman Group Ltd., UK

    Google Scholar 

  • Grattapaglia D, do Amaral Diener PS, dos Santos GA (2014) Performance of microsatellites for parentage assignment following mass controlled pollination in a clonal seed orchard of loblolly pine (Pinus taeda L.). Tree Genet Genomes 10:1631–1643

    Article  Google Scholar 

  • Ji K, Zhang D, Motilal LA, Boccara M, Lachenaud P, Meinhardt LW (2012) Genetic diversity and parentage in farmer varieties of cacao (Theobroma cacao L.) from Honduras and Nicaragua as revealed by single nucleotide polymorphism (SNP) markers. Genet Resour Crop Evol. doi:10.1007/s10722-012-9847-1

    Google Scholar 

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106

    Article  PubMed  Google Scholar 

  • Lacombe T, Boursiquot J-M, Laucou V, Di Vecchi-Staraz M, Pe’ros J-P, This P (2013) Large-scale parentage analysis in an extended set of grapevine cultivars (Vitis vinifera L.). Theor Appl Genet 126:401–414

    Article  PubMed  Google Scholar 

  • Lanaud C, Sounigo O, Amefia YK, Paulin D, Lachenaud P, Clement D (1987) Nouvelles donne’es sur la fonctionement du syste’me d’incompatibilite’ du cacaoyer et ses consequences pour la selection. Cafe’ Cacao The’ 31:267–277

    Google Scholar 

  • Lima LS, Gramacho KP, Carels N, Novais R, Gaiotto FA, Lopes UV, Gesteira AS, Zaidan HA, Cascardo JCM, Pires JL, Micheli F (2009) Single nucleotide polymorphisms from Theobroma cacao expressed sequence tags associated with witches’ broom disease in cacao. Genet Mol Res 8:799–808

    Article  CAS  PubMed  Google Scholar 

  • Livingstone DS, Freeman B, Motamayor JC, Schnell RJ, Royaert S, Takrama J, Meerow AW, Kuhn DN (2012) Optimization of a SNP assay for genotyping Theobroma cacao under field conditions. Mol Breed 30(1):33–52

    Article  CAS  Google Scholar 

  • Livingstone DS, Motamayor JC, Schnell RJ, Cariaga K, Freeman B, Meerow AW, Brown JS, Kuhn DN (2010) Development of single nucleotide polymorphism markers in Theobroma cacao and comparison to simple sequence repeat markers for genotyping of Cameroon clones. Mol Breed 27:93–106

    Article  Google Scholar 

  • Lockwood G, Gyamfi MMO (1979) The Cacao Research Institute of Ghana cacao germplasm collection with notes on codes used in the breeding programme at Tafo and elsewhere. Technical Bulletin No 10. Akim, Ghana: Cacao Research Institute of Ghana

  • Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655

    Article  CAS  PubMed  Google Scholar 

  • McIntyre CL, Jackson PA (2001) Low level of selfing found in a sample of crosses in Australian sugarcane breeding programs. Euphytica 117:245–249

    Article  Google Scholar 

  • Motamayor JC, Lopez PA, Ortiz CF, Moreno A, Lanaud C (2002) Cacao domestication. I. The origin of the cacao cultivated by the Mayas. Heredity 89:380–386

    Article  CAS  PubMed  Google Scholar 

  • Motamayor JC, Lachenaud P, da Silva e Mota JW, Loor R, Kuhn DN, Brown SJ, Schnell RJ (2008) Geographic and genetic population differentiation of the Amazonian chocolate tree (Theobroma cacao L). PLoS ONE 3(10):e3311. doi:10.1371/journal.pone.0003311

    Article  PubMed Central  PubMed  Google Scholar 

  • Motilal L, Butler D (2003) Verification of identities in global cacao germplasm collections. Genet Resour Crop Evol 50:799–807

    Article  Google Scholar 

  • Myles S, Boyko AR, Owens CL, Brown PJ, Grassi F, Aradhya MK, Prins B, Reynolds A, Chia J-M, Ware D, Bustamante CD, Buckler ES (2011) Genetic structure and domestication history of the grape. Proc Natl Acad Sci U S A 108:3530–3535

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • N’Goran JAK, Laurent V, Risterucci AM, Lanaud C (2000) The genetic structure of cacao populations (Theobroma cacao L,) revealed by RFLP analysis. Euphytica 115:83–90

    Article  Google Scholar 

  • Opoku SY, Bhattacharjee R, Kolesnikova-Allen M, Motamayor JC, Schnell R, Ingelbrecht I, Enu-Kwesi L, Adu-Ampomah Y (2007) Assessment of genetic diversity and population structure in West African cacao: a case study on collections from Ghana. J Crop Improv 20:73–87

    Article  CAS  Google Scholar 

  • Padi FK, Opoku SY, Adomako B, Adu-Ampomah Y (2012) Effectiveness of juvenile tree growth rate as an index for selecting high yielding cacao families. Sci Hortic 139:14–20

    Article  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schnell RJ, Heath MA, Johnson ES, Brown JS, Olano CT, Motamayor JC (2004) Frequency of off-type progeny among the original ICS1 × SCA6 reciprocal families made for selection for disease resistance in Trinidad. INGENIC Newsl 9:34–39

    Google Scholar 

  • Takayama S, Isoagi A (2005) Self-incompatibility in plants. Annu Rev Plant Biol 56:467–489

    Article  CAS  PubMed  Google Scholar 

  • Takrama J, Ji K, Meainhardt L, Mischke S, Opoku SY, Padi FK, Zhang D (2014) Verification of genetic diversity of introduced cacao germplasm in Ghana using single nucleotide polymorphism (SNP) markers. Afr J Biotechnol 13:2127–2136

    Article  CAS  Google Scholar 

  • Turnbull CJ, Hadley P (2013) International Cacao Germplasm Database (ICGD). [Online database]. CRA Ltd//NYSE Liffe/University of Reading, UK. Available at: http://www.icgd.reading.ac.uk. Accessed 16 Feb 2015

  • van Nocker S, Gardiner SE (2014) Breeding better cultivars, faster: applications of new technologies for the rapid deployment of superior horticultural tree crops. Hort Res 1, 14022 (2014) doi:10.1038/hortres.2014.22

  • Waits LP, Luikart G, Taberlet P (2001) Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol 10:249–256

  • Zhang D, Arevalo-Gardini E, Mischke S, Zuniga-Cernades L, Barreto-Chavez A, Aguila JD (2006) Genetic diversity and structure of managed and semi-natural populations of Cacao (Theobroma cacao) in the Huallaga and Ucayali Valleys of Peru. Ann Bot 98:647–655

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was financed in part by a grant from Mars Incorporated through the African Cacao Initiative of the World Cacao Foundation (WCF/ACI) and the Ghana Cacao Board. The paper is published with permission of the Executive Director of the Cacao Research Institute of Ghana as manuscript number CRIG/03/2015/028/001.

Ethical standards

The research conducted was in compliance with the laws of the country in which the research was conducted.

Conflict of interest

The authors declare that they have no conflict of interest.

Data archiving statement

SNP markers used for the parentage analyses are supplied as Supplementary Table S1. The list of the germplasm used and their levels of henerozygosity based on the SNP markers are indicated in the Supplementary Table S3. Raw SNP genotype data will be uploaded to the International Cacao Germplasm Database (http://www.icgd.rdg.ac.uk/; Turnbull and Hadley 2013)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis K. Padi.

Additional information

Communicated by D. Grattapaglia

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 246 kb)

ESM 2

(PDF 147 kb)

ESM 3

(PDF 237 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padi, F.K., Ofori, A., Takrama, J. et al. The impact of SNP fingerprinting and parentage analysis on the effectiveness of variety recommendations in cacao. Tree Genetics & Genomes 11, 44 (2015). https://doi.org/10.1007/s11295-015-0875-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-015-0875-9

Keywords

Navigation